

Vol. 16 | No. 02 | 2023 SciEnggJ

291

Survivable Network Design with
Constrained !-Subgraph Flows

Alfonso B. Labao* and Henry N. Adorna

Department of Computer Science, College of Engineering, University of the Philippines, Diliman,

Quezon City, 1101, Philippines

ABSTRACT

n this paper, we propose a variant of the survivable
network design problem, where subgraphs are given flow
constraints, which represent upper bounds on weights of
outgoing edges with endpoints that belong to vertex
subsets of these subgraphs. The general problem of

verifying whether the weights of outgoing edges of any vertex
subset (i.e. a graph cut) of an arbitrary subgraph meets a certain
upper bound is a computationally hard problem. However, our
proposed problem considers special types of subgraphs (termed
!-subgraphs) which possess a tree structure. In particular, a !-
subgraph consists of a trunk whose vertices are connected by a
unique path and which are termed as trunk vertices. Each trunk
vertex is connected to a branch which also has a tree structure.
This special graph structure of ! -subgraphs - along with
conditions over the flow constraint function and additional

constraints on the optimization problem allow for the
construction of a polynomial-time algorithm to solve our
proposed problem - using efficient separation oracles under the
ellipsoid method of linear programming. Our proposed
algorithm provides (2$%, 2'(() + 3) -performance where $ is
the maximum length of any path that connects the root and
leaves of a branch of any !-subgraph, % is the maximum number
of leaves of any branch of a !-subgraph, and (is a vertex subset
of a branch of a !-subgraph.

1. INTRODUCTION

The standard form of the survivable network design problem
considers the problem of assigning an optimal weight to each
edge of an input graph, such that the total cost of edges is
minimized - subject to the constraint that certain connectivity
requirements are met for each vertex pair, (Williamson et al.,
1995). By connectivity requirements, we refer to lower bounds

I

 ARTICLE

*Corresponding author
Email Address: alfonso.labao@upd.edu.ph
Date received: April 2, 2023
Date revised: May 23, 2023
Date accepted: August 15, 2023

KEYWORDS

approximation algorithms; survivable network design;
combinatorial optimization; graph algorithms; algorithmics

 SciEnggJ Vol. 16 | No. 02 | 2023 292

on the number of edge-disjoint paths connecting each pair of
vertices in the input graph. This problem has several practical
applications - particularly in the area of distributed computing
with fault tolerance, (Guo et al., 2013), (Son et al., 2022). In
several of these applications, vertices of the graph represent
individual computers, while edges represent network
connections. In order to ensure fault tolerance, a certain number
of redundant connections have to be imposed for each pair of
computers in the distributed network - which translate to
connectivity requirements in the survivable network design
problem.

The standard survivable network design problem is an ,--hard
problem, (Vazirani, 2013), (Williamson et al., 1995), which
implies that unless - = ,-, polynomial algorithms to arrive at
the optimal solution of the problem would be non-existent.
Under this context, solving for approximate solutions of the
survivable network design problem in polynomial-time would
instead make more sense and be more feasible. This leads to the
area of approximation algorithms, for which some well known
,--hard problems such as knapsack problem, the subset-sum
problem, or the traveling salesman problem have been provided,
(Ibarra and Kim, 1975), (Mömke and Svensson, 2011), (Batra et
al., 2014).

In the case of the standard survivable network design problem,
an early approximation algorithm is provided by (Williamson et
al., 1995), which is a 2/ -approximation algorithm, where /
represents the largest edge-connectivity requirement given any
pair of vertices. The same authors improved this bound further
to 20! using a primal-dual approach, where 0! is the / th
harmonic number. A notable approximation algorithm for this
problem however is provided in (Jain, 2001), which uses
iterative rounding. Namely, the original survivable design
problem is first transformed into a relaxed form, i.e. real
solutions are allowed instead of integral solutions. Under this
relaxed form, standard linear programming procedures would be
able to compute for the (non-integral) optimal solution in
polynomial-time. Afterwards, a key result in (Jain, 2001) is the
fact that any basic feasible solution to the relaxed problem
returned by linear programming results in at least one edge with
weight of at least a half. The algorithm of (Jain, 2001) then
includes such sufficiently weighted edges in a solution set of
edges. Subsequently, these edges are removed in the graph
resulting in a residual graph. The algorithm iteratively re-
computes for an optimal solution under the residual graphs, then
removes all sufficiently weighted edges until no candidate edges
remain. This results in a 2-approximation guarantee, i.e. the
solution returned by the algorithm is within a factor of 2 from
the optimal solution. However, for Jain’s algorithm to work in
polynomial-time, the algorithm uses the ellipsoid method (Bland
et al., 1981) to efficiently solve the linear program under an
exponential number of constraints. The ellipsoid method
requires a polynomial-time separation oracle, which tells the
linear program if some constraint has been violated by a
candidate solution, (Jain, 2001), (Vazirani, 2013).

Since the formulation of the standard form of the survivable
network design problem, several other variants of the problem
have been proposed. For instance, (Chekuri et al., 2012)
incorporates prize-collecting features to the problem. Another
variant of the survivable network design problem is proposed by
(Lau and Singh, 2013) which incorporates constraints on vertex
degrees, giving a (2,21" + 3) bi-criteria approximation
algorithm using iterative rounding with relaxation, where 21" +
3 implies that under the approximation algorithm violates the
degree bound 1" of vertex 2 by 21" + 3.

1.1 Our Contributions

In this paper, we propose a variant of the survivable network
design problem, whereby in addition to connectivity
requirements, certain constraints on the outgoing flows of
subgraphs are included. It should be noted that given an arbitrary
set of weights for edges of an arbitrary subgraph, the general
problem of verifying whether the weights of outgoing edges of
each vertex subset of the subgraph complies with a provided
constant upper bound is a computationally hard problem. This is
because this problem is basically an instance of the MAX-CUT
problem, which looks for the maximal cut in a graph. MAX-
CUT is shown NP-complete (Ausiello, 2012). To see this fact,
suppose that a solution to the MAX-CUT problem is discovered,
in the form of a set of vertices whose outgoing edges have
weights that are maximal. This implies that all other vertex
subsets for a subgraph have outgoing edges whose weights are
less than the weights provided by the solution. If the solution is
less than or equal to the provided upper bound, then all other
subsets likewise comply with the constant upper bound. On the
other hand, if the solution to the MAX-CUT problem violates
the upper bound, then there is at least one vertex subset that does
not comply with the constant upper bound. Due to this
computational difficulty, this paper narrows the type of
subgraphs considered to certain subgraphs (termed ! -
subgraphs)which follow a tree structure. In particular, a ! -
subgraph consists of a trunk and a set of branches. The trunk of
a !-subgraph is itself a subgraph made up of trunk vertices that
are connected by a unique path, such that all edges of the trunk
have to belong to this path. Each trunk vertex represents the root
of a branch. A branch of a !-subgraph is a subgraph in the form
of a tree (i.e. a graph with no cycles) whose root is a trunk vertex.
The collection of !-subgraphs is termed ℋ, and in order for ℋ
to be considered as a valid input to the problem (i.e. an
admissible input), vertex sets of !-subgraphs have to be disjoint.
Moreover, for each !-subgraph of ℋ, vertex sets of its branches
have to be likewise disjoint. Given ℋ, our proposed variant of
the survivable network design problem provides upper bounds
on the weights of outgoing edges of subsets of branches of each
!-subgraph. However, the upper bounds have to have special
properties such as being constant for all subsets of each branch
of the !-subgraph, and of being defined only for subsets that
contain the trunk vertex. Moreover, we impose additional
constraints on the resulting optimization problem (OP 3) such as
requiring that edges that are “closer” to the trunk vertex have
greater weight than edges that are “farther” from the trunk vertex.
Several other constraints and conditions are incorporated into
our proposed problem which are described in detail in this paper.

Under these constraints, we propose a polynomial-time
algorithm which use polynomial-time separation oracles. These
separation oracles efficiently indicate any violation of the
constraints of OP 3, which would form a part of the ellipsoid
method needed for efficiently solving the linear program. Our
proposed algorithm is a (2$%, 2'(() + 3) -approximation
algorithm, where $ is the maximum length of any path that
connects the root and leaves of any branch of any !-subgraph,
while % is the maximum number of leaves of any branch of any
!-subgraph, and (is a subset of a branch of a !-subgraph that is
subjected to flow constraints. Our algorithm uses a variant of the
iterative rounding with relaxation algorithm shown in (Lau and
Singh, 2013). We provide detailed technical proofs in the
Appendix to prove the approximation guarantees of our
proposed algorithm which uses the concept of laminar sets and
properties of submodular / weakly-supermodular functions.

2. Preliminaries

For any / ∈ ℕ , let [/] denote {1,2, . . , /} . Let <(=, >) be a
graph with set of vertices = and set of edges >. A vertex 2 ∈ =

Vol. 16 | No. 02 | 2023 SciEnggJ

293

is denoted in lowercase, while an edge connecting a pair of
vertices ?, @ ∈ = is denoted by A#,% , and the vertices ?, @ are the
endpoints of A#,%. In some cases, we also denote an arbitrary edge
in > simply as A, with no endpoints specified. Throughout the
paper, we assume that all graphs < are undirected. This implies
that ∀?, @ ∈ =, we have A#,% = A%,#. We now state the following
definitions which will be used throughout the paper.

Definition 1 Given graph <(=, >), a walk from vertex ? ∈ = to
another vertex @ ∈ = is a finite sequence of edges
((?&, @&), (?', @'), . . . , (?(, @()) for some C > 0 such that ?& = ?,
@(= @ , and @! = ?!)& for some / ∈ {1,2, . . . C − 1}. Given a
walk ((?&, @&), (?', @'), . . . , (?(, @()), the nodes {?&, ?', . . . , ?(, @(}
comprise the vertex sequence of the walk. A path from vertex ?
to vertex @ is a walk in which all elements of its vertex sequence
are distinct, and the first and last vertices of the sequence are ?
and @ respectively. The vertex ? is the start of the path, while
vertex @ is the end of the path. A path is said to pass through a
set of vertices, if the set of vertices correspond to a subset of
vertices of the path’s vertex sequence. If there exists a path from
? to @, then vertices ? and @ are connected. Two paths from ? to @
are edge-disjoint if their edges do not share common endpoints
aside from the start and end vertices, i.e. no common endpoints
except for {?, @}.

Definition 2 Given graph <(=, >), let (⊆ = denote a subset of
vertices with weight H* associated to each edge A ∈ > . We
define I(() as corresponding to the set of edges {A#,% ∈ >} such
that ? ∈ (and @ ∈ = − (. In other words, I(() denotes the set of
edges with one endpoint in (and another endpoint in = − (. Let
H be a set of weights, where each edge A ∈ > is given a weight
H* . Given (, (′ ⊆ = , the flow of (to (′ refers to the sum of
weights of edges with one endpoint in (and another endpoint in
(′.

Definition 3 Given graph <(=, >), let (⊆ = denote a subset of
vertices. The subgraph <+((, >′) induced by (is defined as the
graph whose set of vertices is (, and whose set of edges >′ is
such that for each A#,% ∈ >′, we have A#,% ∈ >, ? ∈ (, and @ ∈ (.

Definition 4 Given graph <(=, >), let 2 ∈ = be any vertex, and
let (⊆ = be a subset of vertices. The set (is connected to 2 if
2 ∈ (, and for each ? ∈ (such that ? ≠ 2 , we have that ? is
connected to 2 in the subgraph <+((, >′) induced by (.
Similarly, given a set L ⊆ = and let (⊆ = be subsets of vertices.
The set (is connected to L if L ⊆ (, and for each ? ∈ (such
that ? ∈ L, we have that ? is connected to each of the vertices of
(.

Definition 5 Given graph <(=, >), let 2 ∈ =. If a certain subset
of = is given the notation △"⊆ = , this means that △" is
connected to 2 . Similarly, given a set (⊆ = , the subset △+
denotes a set of vertices that are connected to the set of vertices
(.

Definition 6 A tree N(=, >) is an undirected graph in which for
each ?, @ ∈ =, vertices ? and @ are connected by exactly one path.
An undirected rooted tree N(O, =, >) is a tree in which one
special vertex O ∈ = is designated as a root. Given a root O, let
((2,, 2&), (2&, 2'), . . . , (2! , O)) be any path from some 2, ∈ = to
O. This path defines a linear order 2, ≺ 2& ≺ 2'. . . . ≺ 2! ≺ O,
in which 2% is the parent of 2%-&, and 2%-& is the child of 2% for
@ ∈ {1,2, . . , / + 1} with 2!)& = O. Given any parent vertex 2%
for some @ > 0 that corresponds to the endpoint of an edge
belonging to some path towards O, the set Q denotes the set of
all child vertices of 2%, which is the union of all the children of
2% given all possible paths towards O that passes through 2%. A

vertex 2. ∈ = is a leaf if for any path that passes through 2. and
ends at the root O, it is the case that 2. has a parent (if 2. is not
itself the root), but has no child.

2.1 Connectivity Requirement Functions

The definitions below describe connectivity requirement
functions introduced in the standard survivable network design
problem. A connectivity requirement function provides a lower
bound on the number of edge-disjoint paths between a pair of
vertices of graph.

Definition 7 Given graph <(=, >), an edge cost function is a
non-negative function R: > → ℚ) that provides a cost R* for
each edge in A ∈ > . The connectivity requirement O#,% for
vertices ?, @ ∈ = is a number that represents a lower bound on
the number of edge-disjoint paths from ? to @. The connectivity
requirement function V, is a function that assigns a lower bound
requirement on the number of edges of I(() for each (⊆ =. In
particular for each (⊆ = , V(() is defined as: V(() =
CWH#∈+,%∈+O#,%.

2.2 Submodular and Weakly Supermodular Functions

These definitions describe properties of weakly supermodular
functions, which are used in (Jain, 2001) to provide a 2 -
approximation algorithm for the standard survivable network
design problem. In particular, it will be shown later in the paper
how weakly supermodular functions facilitate the construction
of a laminar collection of vertex sets – which would prove to be
crucial in the proof for Theorem 1 below. These definitions
follow (Williamson and Shmoys, 2011) and (Vazirani, 2013).

Definition 8 Given graph <(=, >), a function X: 20 → ℤ) is
submodular if X(=) = 0, and for every two sets Z, [⊆ =, the
following two conditions hold:
 1. X(Z) + X([) ≥ X(Z ∩ [) + X(Z ∪ [)
 2. X(Z) + X([) ≥ X(Z − [) + X([− Z)

Definition 9 Given graph <(=, >), a function X: 20 → ℤ) is
weakly supermodular if X(=) = 0 , and at least one of the
following conditions hold:
 1. X(Z) + X([) ≤ X(Z ∩ [) + X(Z ∪ [)
 2. X(Z) + X([) ≤ X(Z − [) + X([− Z)

In particular, it can be shown that the function I shown in
Definition 2 is submodular, while the connectivity requirement
function V shown in Definition 7 is weakly supermodular. To
see this fact for I, following (Vazirani, 2013), we consider the
following graph whereby sets Z and [have a non-empty
intersection (if Z and [do not intersect then I is trivially
submodular).

Here, edges with an endpoint in Z ∩ [and another in Z ∪ [`̀ `̀ `̀ ` are
counted in both I(Z) and I([) but not in I(Z − [) or in I([−
Z). In addition, edges with an endpoint in Z − [and another in
[− Z are counted in both I(Z) and I([) but not in I(Z ∩ [)
or I(Z ∪ [). v On the other hand, the connectivity requirement
function V is weakly supermodular. The proof for the weakly

 SciEnggJ Vol. 16 | No. 02 | 2023 294

supermodular properties of V are shown in Section 6.1 of the
Appendix.

2.3 Laminar and Crossing Sets

The algorithm of (Jain, 2001) used a laminar collection sets for
proving the existence of an edge with weight at least 1/2 at each
iteration of the iterative rounding algorithm. The definition of a
laminar collection of sets below follow the presentation in
(Williamson and Shmoys, 2011) and (Vazirani, 2013).

Definition 10 Given graph <(=, >), two sets Z ⊆ = and [⊆
= are said to cross if each of the sets Z − [, [− Z and Z ∩ [
is nonempty. A collection ℒ of subsets of = is laminar if no pair
of sets Z, [∈ ℒ cross. This implies that if Z, [∈ ℒ , and ℒ is
laminar, then either Z and [are disjoint, or one is contained in
another.

As an illustration for the definition of laminarity, let Z, [, Q, c, >
be sets such that Z ∩ [is nonempty. In the figure below, the
collection of sets Z and [cross and is therefore not laminar. On
the other hand, the collection of sets Q,c and > are laminar
given that no two sets cross.

If a collection of sets is laminar, certain nice properties would
result. In particular, under a laminar collection of sets, proofs
involving counting arguments could be easily applied. An
illustration of a counting argument involving a laminar
collection of sets is shown in Section 6.2 of the Appendix which
shows that there has to be an edge with weight at least 1/2 in
order to avoid a contradiction whereby the number of edges
counted would exceed the number of edges in the solution. In
addition, Lemma 11 of Section 6.3 of the Appendix applies a
similar counting argument over a laminar collection of sets in
order to prove the main Theorem of this paper which is Theorem
3 below.

3. Standard Survivable Network Design

We now describe the standard survivable network design
problem as shown in (Jain, 2001). To avoid repetition, this paper
assumes that all input graphs <(=, >) from this point onwards
have costs R* associated to each edge A ∈ >.

3.1 Problem Description

Given an input graph <(=, >) with costs R* associated to each
edge A ∈ >, the standard survivable network design problem is
as follows (OP 1).

ming

*∈1

R*H*

 subject	to
 ∀(⊆ =:∑*∈2(+) H* ≥ V(()
 ∀A ∈ >: H* ∈ {0,1}

A relaxation of OP 1 which allows for non-integer solutions
could be solved in polynomial-time using standard linear

programming algorithms. This relaxation of OP 1 is now shown
as OP 2 which is as follows.

 min∑*∈1 R*H*
 subject	to
 ∀(⊆ =:∑*∈2(+) H* ≥ V(()
 ∀A ∈ >: H* ≥ 0

A possible source of exponential time consumption in solving
OP 2 is the constraint ∀(⊆ =:∑*∈2(+) H* ≥ V(() since it
requires checking constraint compliance for each subset (⊆ =.
However, as mentioned, this hurdle could be solved using the
ellipsoid method, (Williamson and Shmoys, 2011), (Vazirani,
2013).

3.2 Existing Approximation Algorithm

Following (Williamson and Shmoys, 2011), an r -
approximation algorithm for an optimization problem is an
efficient (i.e. polynomial-time relative to the size of the input)
algorithm that for all instances of the problem produces a
solution whose value is within a factor of r from the value of an
optimal solution. For the Theorems and Definitions below, we
make an assumption over the edges of the input graph after
solving for a feasible solution to OP 2. Namely, we assume that
all edges in the input graph <′ to OP 2 with zero weight under
some solution H are removed. This results in a residual graph
where we have H* > 0 for each A ∈ >. With this assumption, we
define the following.

Definition 11 Given an optimization problem with C linear
inequalities, a feasible solution is a solution instance for the
problem where no constraint is violated. A solution is a basic
feasible solution if it satisfies C linearly independent
inequalities with equality. A basic feasible solution cannot be
written as the convex combination of two other feasible solutions.

Definition 12 Given input graph <(=, >) to OP 2, let H be a
feasible solution, where H:= {H*}*∈1. A set (⊆ = is tight with
respect to connectivity requirements given by V if ∑*∈2(+) H* =
V(().

Definition 13 Given input graph <(=, >) to OP 2, let H be a
feasible solution, where H:= {H*}*∈1. The characteristic vector
s+ corresponding to (⊆ = is a vector in {0,1}|1| where each
coordinate of s+ is mapped to a particular edge A ∈ >. If given
A ∈ > we have A ∈ I(() , the value of the coordinate
corresponding to A in s+ is 1. Otherwise, it is 0.

With the above Definitions, we now state the 2-approximation
algorithm from (Jain, 2001) as follows.

Vol. 16 | No. 02 | 2023 SciEnggJ

295

Algorithm 1: Iterative Rounding for Standard Survivable Network Design

The proof that Algorithm 1 is a 2-approximation algorithm relies
on the main Theorem in (Jain, 2001), which is stated as Theorem
1 below.

Theorem 1 (Jain, 2001): For any weakly supermodular
function t, any basic feasible solution u to OP 2 has an element
whose value is at least v/w, i.e. u6 ≥ v/w for at least one edge
x ∈ y.

In order to establish Theorem 1, (Jain, 2001) first established
results stated in Theorem 2 (below) which states the important
fact that if t is weakly supermodular, then in a basic feasible
solution u to the standard survivable network design problem of
OP 2, there is a laminar collection z of tight sets. As mentioned
before, if a collection of sets is laminar, proofs involving
counting arguments could be applied as described in Section 6.2
of the Appendix which establishes the existence of at least one
edge with weight v/w as stated in Theorem 1.

Theorem 2 (Jain, 2001): Given input graph {(|, y) to OP 2,
let t be a weakly supermodular function t for connectivity
requirements, and let u be any basic feasible solution. Given u,
there is a collection z of subsets of vertices of | with the
following properties:

1. for all } ∈ z, } is tight.

2. the characteristic vectors ~7 for all } ∈ z are
linearly independent.

3. |z| = |y|, where y is the set of edges of the new
graph {′(|, y) , where all edges x in the original
input graph with u6 = Ä are removed.

4. z is laminar.

The condition that V is weakly supermodular and the fact that I
is submodular is important to establish laminarity of ℒ in
Theorem 2 above. From (Jain, 2001) the laminar collection ℒ is
constructed from an initial non-laminar collection of sets using
an iterative uncrossing process. Namely, any pair of crossing
sets could be effectively replaced by a pair of sets that are
laminar. For instance, suppose that Z and [are two sets in ℒ
that cross. Following Lemma 23.14 of (Vazirani, 2013), we have
that one of the following must hold: (1) Z − [and [− Z are
both tight and s8 + s9 = s9-8 + s8-9 or (2): Z ∪ [and Z ∩
[are both tight and s8 + s9 = s8∪9 + s8∩9 given that V is
weakly supermodular. This implies that given crossing sets Z
and [, we can keep the optimal solution by uncrossing Z and [
and replacing them with the laminar pair of sets Z − [and [−
Z if (1) holds. On the other hand, if (2) holds, then Z and [can
be replaced by the laminar pair of sets Z ∪ [andZ ∩ [. To see
that either (1) or (2) holds, following (Vazirani, 2013), we use

the weakly supermodular property of V, whereby we either have:
V(Z) + V([) ≤ V(Z − [) + V([− Z) or V(Z) + V([) ≤
V(Z ∪ [) + V(Z ∩ [). If the former holds, given that Z and [
are both tight sets under the basic feasible solution H, we have
∑ H**∈2(8) +∑ H**∈2(8) = V(Z) + V([). Moreover, given that
H is feasible, we have ∑ H**∈2(8-9) +∑ H**∈2(9-8) ≥ V(Z −

[) + V([− Z). Given that V(Z) + V([) ≤ V(Z − [) + V([−
Z) , this leads to ∑ H**∈2(8) +∑ H**∈2(8) ≤ ∑ H**∈2(8-9) +

∑ H**∈2(9-8) . But from the submodularity of I, the left hand
side of the prior equation is at least greater than the right hand
side given that I(Z) and I([) also count edges with one
endpoint in Z ∪ [`̀ `̀ `̀ ` and another in Z ∩ [. Hence, we should have
∑ H**∈2(8) +∑ H**∈2(8) = ∑ H**∈2(8-9) +∑ H**∈2(9-8) .
However, this equality could only be met if edges with one
endpoint in Z ∪ [`̀ `̀ `̀ ` and another in Z ∩ [is given zero weight in
H . Hence, s8 + s9 = s9-8 + s8-9 under the condition that
V(Z) + V([) ≤ V(Z − [) + V([− Z). A similar result applies
if V(Z) + V([) ≤ V(Z ∪ [) + V(Z ∩ [) holds instead.

Aside from the weakly supermodular property of V and the
submodular property of I, construction of a laminar collection
of sets such that |ℒ| = |>| also requires the first two properties
of tightness and linear independence. More details are explained
in Section 6.2 of the Appendix. For the problem considered in
this paper which incorporates the standard survivable network
design problem, an analogous result regarding the uncrossing
process of tight sets to form a laminar collection is described in
Lemmas 4-8 of Section 6.3 of the Appendix.

4. Survivable Network Design with Constrained Å-subgraph
Flows

In this section, we now describe our proposed variant of the
survivable network design problem such that outgoing flows in
! -subgraphs are constrained. We first describe a list of
conditions for an input graph with its set of !-subgraphs to be
considered as a valid input to our proposed problem. We also
indicate conditions for the validity of the connectivity
requirement function V and the flow constraint function ' .
Finally, we state our proposed problem in terms of an
optimization problem OP 3.

To explain the motivation behind our proposed problem, recall
that flow constraint functions provides bounds on the weight of
edges in graph cuts. For instance, the maximum flow problem is
equivalent to the minimum cut problem, which could be
efficiently solved using the Ford-Fulkerson algorithm
(Williamson and Shmoys, 2011). In this paper, we consider the
converse problem of providing upper bounds on the weight of
edges in graph cuts, whereby the upper bound is provided by the
function '. For instance, in the figure below, if '(() = 1, then

 SciEnggJ Vol. 16 | No. 02 | 2023 296

the sum of weights for edges W, 1 and R has to be less than 1,
where W, 1, and R are the outgoing edges of vertex set (.

e,

In a general subgraph however with set of vertices = , if the
function ' is defined for each subset (⊆ =, then the process of
checking if each possible subset of vertices (⊆ = complies with
' could not be done in polynomial time given that the number of
subsets of vertices of = is exponential. A possible workaround
for this could be to check for the subset (that provides the
maximum cut under a constrained constant '. If such a subset (
is found to comply with a constant ' in the sense that the weights
of its outgoing edges is less than '((), where '(() is constant
for all (⊆ =, then all other subsets of = would likewise comply
with '. However, this could not be done in polynomial time
given that the maximum cut problem is NP-complete (Ausiello
et al., 2012).

Given the above difficulties, the problem in this paper does not
opt to consider general subgraphs with a general flow constraint
function ' defined for all subsets of vertices of the subgraph.
Instead, specific instances of subgraphs termed !-subgraphs are
considered along with a special type of flow constraint function
' that is defined only for certain subsets of the !-subgraph.
Briefly, a !-subgraph can be described as having a tree structure
(conditions [G1]-[G4]) below, with branches that are described
in the following figure, where the vertices of the branch are
small green circles along with one small blue circle which is
termed a “trunk vertex”.

Likewise, the flow constraint function is defined only for
specific subsets of the !-subgraph, such as the subsets of vertices
that are encircled in the figure above. In addition, ' is required
to be constant for all subsets of vertices in a branch for which it
is defined. These are described in conditions [Z1]-[Z3]
pertaining to ' below. Added to this, the optimization problem
(OP 3) is constructed in such a way that given a branch in a !-
subgraph, it has to be the case that edges closer to a special
vertex termed the “trunk vertex” have to have higher weight than

the sum of edges below it. For instance, consider the branch
illustrated in the following figure. Here, suppose that the weights
of 1 and R are both 0.5 each. Under the constraints of OP 3, a
feasible solution has to set the weight of W as less than or equal
to 0.5 and the sum of weights of É and A as less than or equal to
0.5.

Given conditions [G1]-[G4] pertaining to ! -subgraphs and
conditions [Z1]-[Z3] pertaining to the flow constraint function
', along with the constraints of OP 3, it could now be easily
checked in polynomial time if each subset of vertices of a branch
of the !-subgraph complies with the flow constraint function '
by simply checking the weight of edges connected to trunk
vertices. For instance, in the figure above, given that edges 1 and
R have larger weight than the sum of edges below it, if the sum
of both 1 and R is less than or equal to the constraint dictated by
', then all possible subsets of vertices in the branch also comply
with ' given that ' is constant for all subsets of vertices in the
branch. This is the intuition behind the separation oracle for the
second constraint of OP 3 which is described below.

4.1 Additional Definitions

Definition 14 Given input graph <(=, >), let H be a set of edge
weights, i.e. H:= {H*}*∈1 . A flow constraint function ': 20 ×
20 → ℕ, applies the following upper bound to each (, (′ ⊆ =:

∑*∈1 H* ≤ '((, (<)

where A has one endpoint in	(and another in (′ (1)

In some cases, the flow constraint function ' is designed such
that for some (⊂ =, only a subset of edges x ⊆ I(() with one
endpoint in (and another endpoint in some pre-defined (′ ⊆ =
have finite upper bounds. All other edges A ∈ I(() ∧ A ∈ x have
infinite upper bounds. Under this context, the flow constraint
function for (is simplified to ': 20 → ℕ, and is denoted as '(()
for ease of notation as the corresponding (′ is already given and
understood for each (⊆ = . For this paper, we adopt this
convention in defining ' for all (⊆ = as we will specify
beforehand the specific edges in I(() that would have finite
upper bounds under '.

Definition 15 Given input graph <(=, >), let (⊆ = be a subset
of vertices. The flow constraint function ' is uniform over (if
for each pair of subsets (′ ⊆ (and (′′ ⊆ (, we have '((′) =
'((′′).

Definition 16 Given input graph <(=, >), let H be a set of edge
weights. A set (⊆ = is tight with respect to flow constraints
given by ' if ∑*∈2(+) H* = '(() where A has one endpoint in (
and another endpoint in some pre-defined (′.

Vol. 16 | No. 02 | 2023 SciEnggJ

297

4.2 Problem Components

This subsection provides definitions that describe properties of
!-subgraphs by means of conditions. An illustration of a !-
subgraph is shown in Fig. 1. Conditions for flow constraint
functions and connectivity requirement functions to be valid or
admissible are also stated.

Figure 0: Figure illustrating a !-subgraph inside an input graph

to the survivable network design problem. The trunk of the

subgraph has trunk vertices (blue circles) that are connected by

a unique path (edges of the trunk’s unique path are marked as

red lines). The trunk vertices serve as roots of branches whose

sets of vertices (green circles) are disjoint. All other vertices that

do not belong to the !-subgraph are gray circles.

Definition 17 Given a graph {(|, y), a subgraph of { can be
considered as a Å-subgraph if it meets conditions G1-G4 defined
below. The collection of sets of vertices of all Å-subgraphs in {
is á.

1. condition [G1]: ∀à,à′ ∈ á, we have à∩à′ = ∅, i.e.
á is a disjoint collection of subsets of |.

2. condition [G2]: ∀[∈ ℋ, the subgraph <9([, >′)
induced by [is composed of the following:

(a) A trunk consisting of a set of trunk vertices
{ä=

> , ä?
> , . . , ä@

> } ⊂ à for some ã > Ä and trunk
edges ((ä=> , ä?>), (ä?> , äA>), . . . , (ä@-?> , ä@

>)) ⊂ y′ that
define a unique path connecting each pair of trunk
vertices. The notation ä> refers to some arbitrary
trunk vertex of à.

(b) Given ã trunk vertices in à , {B(à, y′) also
contains a set of disjoint branches consisting of
rooted trees {å(äC>, |D, yD)}C∈[@] in which the root
äC
> ∈ |D of each branch is a trunk vertex.

3. condition [G3]: ∀[∈ ℋ, ∀2G ∈ [, there is no edge in >
connecting any trunk vertex 2G to = − [.

4. condition[G4]: ∀[∈ ℋ, ∀N(2G, =H , >H), there is no edge

connecting any ? ∈ =H with ? ≠ 2G to any other trunk
vertex 2G< ∈ [such that 2G< ≠ 2G.

Definition 18 A pair consisting of a graph <(=, >) and a
collection ℋ of subsets of = is admissible if each set of vertices
in ℋ complies with conditions G1-G4. It follows that the set of
subgraphs induced by the sets of vertices of ℋ is the set of !-
subgraphs of <.

Definition 19 Given an admissible graph <(=, >) with
admissible collection ℋ of subsets of =, for some [∈ ℋ, let
N(2G, =H , >H) be a branch whose root is some trunk vertex 2G ∈
[. Let △"!⊆ =H be any subset of =H that is connected to =. We
define the set ç(△"!) as corresponding to the set of edges with
one endpoint in △"! and another endpoint in either = − [, or in

=H −△"!, i.e. this set is equivalent to the set of edges in I(△"!)
less the trunk edges for which 2G represents an endpoint.

Definition 20 Given an admissible graph <(=, >) with
admissible collection ℋ of subsets of =, the collection ℋ is $-
admissible if for any branch N(2G, =H , >H) with root 2G ∈ [for
any [∈ ℋ, the maximum length of any path in >H from 2G to a
leaf vertex in =H is at most $.

Definition 21 Given an admissible graph <(=, >) with
admissible collection ℋ of subsets of =, the collection ℋ is %-
admissible if for any branch N(2G, =H , >H) with root 2G ∈ [for
any [∈ ℋ , the maximum number of leaves in the tree
N(2G, =H , >H) is at most %.

Definition 22 Given an admissible graph <(=, >) with
admissible collection ℋ of subsets of =, the collection ℋ is $%-
admissible if ℋ is both $-admissible and %-admissible.

Definition 23 Given an admissible graph <(=, >) with an
admissible collection ℋ of subsets of =, let H be a set of edge
weights. A flow constraint function ': 20 → ℕ is admissible if it
meets the following conditions.

1. condition [Z1]: ∀[∈ ℋ , ∀2G ∈ [given the branch
N(2G, =H , >H), ' is uniform over all subsets △"!⊆ =H that
are connected to 2G.

2. condition [Z2]: ∀[∈ ℋ , ∀2G ∈ [, given the branch
N(2G, =H , >H) and a subset △"!⊆ =H connected to 2G , we
have:

∑#∈△"! ,%∈0-9 H*#,% + ∑#∈△"! ,%∈0&-△"! H*#,% ≤ '(△"!) (2)

In this case, the pre-defined set (′ that is associated with △"!
for which '(△"!) provides finite upper bounds for all edges
with one endpoint in △"! and another endpoint in (′ is (′:=
(= − [) ∪ (=H − 2

G). Thus, the above equation could be
simplified to:

∑*∈J(△"!) H* ≤ '(△"!) (3)

3. condition [Z3]: For all other subsets (⊆ = that are not
subsets △"!⊆ =H connected to the root 2G of some branch
N(2#

G, =H , >H) ⊂ <9([, >′) of some [∈ ℋ , we have
'(() = ∞, i.e. no flow constraint is imposed.

From the definition of ' above, for any vertex subset △"!⊆ =H,
for any branch N(2G, =H , >H) with root 2G ∈ [with [∈ ℋ, we
have under condition è2 that ' actually provides an upper
bound on ç(△"!). This is due to conditions G3-G4 of ℋ.

Definition 24 Given an admissible graph <(=, >) with an
admissible collection ℋ of subsets of =, let H be a set of edge
weights. A connectivity requirement function V: 20 → ℕ is
admissible if it meets the following conditions:

1. condition [F1]: ∀[∈ ℋ,∀? ∈ [, ∀@ ∈ = − {?}: O#,% = 0 ,
i.e. there are zero connectivity requirements between any
vertex in [to any other vertex.

2. condition [F2]: V is weakly supermodular.

 SciEnggJ Vol. 16 | No. 02 | 2023 298

4.3 Optimization Problem 3

The survivable network design with constrained ! -subgraph
flows problem requires an admissible input graph <(=, >), a $%-
admissible collection ℋ of subsets of = , an admissible
connectivity requirement function V and admissible flow
constraint function '. Given these inputs, the problem is termed
optimization problem 3 (OP 3) and includes an additional
constraint (constraint C2), whereby for each branch
N(2G, =H , >H) with root 2G ∈ [for some [∈ ℋ , the problem
requires that for any vertex in 2 ∈ =H , the sum of weights of
edges from 2 to its children should be less than or equal to the
weights of the edge connecting 2 to its own parent. In this case,
a vertex ? is a child of 2 if there is a path from ? to the root 2G
whose first edge is A#,". Given this constraint, OP 3 is described
as follows.

Survivable network design problem with constrained Å -
subgraph flows (relaxed form)

Input:

1. Admissible input graph <(=, >) with a $% -admissible
collection of sets of vertices ℋ

2. Admissible flow constraint function '
3. Admissible connectivity requirement function V

Solve for u:

ming

*∈1

R*H*

subject to:
∀(⊆ =:

			 "
!∈#(%)

#! ≥ %(')

∀[∈ ℋ,∀2G ∈ [given	the	branch	N(2G, =H , >H)	
we	have	the	following	for	all

△"!⊆ =H	that	are	connected	to	2
G:

g

#∈△"! ,%∈0-9

H*#,% + g

#∈△"! ,%∈0&-△"!

H*#,% ≤ '(△"!)

∀[∈ ℋ,∀2G ∈ [, given	the	branch	N(2G, =H , >H),
let	2L ∈ =H

							be	any	parent	vertex	with	set	of	child	vertices	
Q ⊂ =H , and	let

								2M ∈ =H	be	the	parent	vertex	of	2L.We	have:

g

#∈N

A#,"' ≤ H*"',"(

∀A ∈ >: H* ≥ 0

It could be seen that the survivable network design with
constrained !-subgraph flows problem is at least as hard as the
standard survivable network design problem. Any instance of
the standard survivable network design problem could be
reduced to an instance of the survivable network design with
constrained !-subgraph flows problem by setting the input ℋ as
empty. Afterwards, '(() is set to ∞ for all possible subsets (⊂
= of vertices of the input graph <(=, >). The only remaining
constraints for this reduced problem are those that refer to
connectivity requirements given by V, which thereby represents
the standard survivable network design problem.

4.4 Proposed Approximation Algorithm

Algorithm 2: Iterative Rounding with Relaxation for Survivable Network Design Problem with Constrained !-Subgraph Flows

Vol. 16 | No. 02 | 2023 SciEnggJ

299

Algorithm 2 above shows our proposed approximation
algorithm which provides (2$%, 2'(() + 3) approximation
guarantee as stated in Theorem 4. The core theory for justifying
this approximation guarantee is Theorem 3 below which states
that at each iteration of Alg. 2, either there is at least one edge
with weight of at least 1/2, or there is some vertex set △"! that
belongs to the branch of some ! -subgraph with at most 3
outgoing edges. The proof for Theorem 3 is shown in the
Appendix which relies on Theorem 5 – the Theorem that is
analogous to Theorem 1 for the standard survivable network
design problem To show that Algorithm 2 operates in
polynomial-time, we enumerate the needed separation oracles in
Section 4.5 below.

Theorem 3 At each iteration ? of Algorithm 2, where H is a
basic feasible solution for OP 3, at least one of the following
occurs:

1. there is at least one edge A such that H* ≥ 1/2.
2. there is a set △"!⊆ =H , where =H is the vertex set of a

branch N(2G, =H , >H), with root 2G ∈ [for some [∈ ℋ
such that |ç(△"!)| ≤ 3.

To illustrate these two options, we provide Figures 1a and 1b
below. Here, we slightly abuse the notation by using lowercase
letters, i.e. W, 1, R, AùR to refer to edges. At the same time, if an
edge is assigned a value using the = operation, i.e. W = 1.0, this
implies that in a solution, edge W is provided a weight of 1.0.

Figure 1a: Figure showing an instance whereby the algorithm

chooses the first option. Here, the cost of edge " is #. %&, while

the costs of edges ' to (is each 1.00.

As a very simple illustration of the first option, consider Figure
1a. Here, node 2& is required to be connected by one path to
node 2O. In this case, node 2& may use the path provided by edge
W, to go to 2O or it may use the path provided by the subgraph
[& which goes through edges 1, R, É, A, V. But given that the the
cost of edge W is 0.25, while the costs of edges 1 to V is 1.00,
the linear programming solution would assign a weight of 1.0 to
edge W, while a weight of 0.0 would be assigned to edges 1 to V.
This solution is feasible given that including edge W in the
solution already satisfies the connectivity requirement that at
least one path connects 2& to 2O. Given that the weight of W is
greater than 0.5 , the algorithm chooses the first option and
includes W in its solution set.

Figure 1b: Figure showing an instance whereby the Algorithm chooses the second option. Here, the costs of edges ",) and (is each *##. #,

while the costs of edges ', + and , is each #. %&.

As an illustration of the second option, consider Figure 1b above.
Here, vertices 2&, 2' and 2P are required to be connected by one
path to vertex 2Q as per connectivity requirements. Vertices 2&,
2' and 2P can be connected to 2Q either by passing through
subgraphs [&, [', and [P respectively, or by using longer paths
illustrated by dashed orange lines (which are disjoint from the
three subgraphs [&, [', and [P). Suppose that in this example,
subgraphs [&, [', and [P are provided a flow constraint of 1.0
for all vertex sets connected to its trunk vertices. Suppose as well
that in the optimal solution returned by linear programming, the
trunk vertices of subgraphs [& and [' (blue vertices) receive a
cumulative incoming weight of 0.60 coming from edges whose

parents are yellow vertices. The incoming weight of 0.60
however is distributed across edges (not shown in the figure)
whose individual weights are all less than 0.5. This implies that
the maximum weight that can be assigned to edges W and 1 in
the graph is 0.4 in order to comply with the 1.0 flow constraint.
Suppose as well that in the optimal solution returned by linear
programming, edges that belong to the orange path are allocated
a weight of 0.25. This implies that 2&, 2' and 2P only need to
allocate an additional weight of 0.75 to their outgoing edges in
order to meet their connectivity requirements with 2Q, or that
W + 1 ≥ 0.75, R + V	 ≥ 0.75 and É + A	 ≥ 0.75. In fact, given
that the costs of edges W, A and V is each 100.0, while the costs

 SciEnggJ Vol. 16 | No. 02 | 2023 300

of edges 1 , R and É is each 0.25,	 the basic feasible solution
returned by linear programming results in a solution of W = 0.40,
1 = 0.35, R = 0.3, É = 0.35, A = 0.4 and V = 0.45. Assuming
that all other edges not shown in the figure aside from W to V all
have weight less than 0.5, the algorithm may pick the vertex set
△"! comprising of edges encircled in a lightly colored yellow
box, where 2G ∈ [' . In this case, ç(△"!) = {1, R, É} and
|ç(△"!)| ≤ 3.

Theorem 4 Given an admissible graph <(=, >) , a $% -
admissible collection ℋ of subsets of = , an admissible
connectivity requirement function V and admissible flow
constraint function ' , Algorithm 2 is a (2$%, 2'(() + 3)
approximation algorithm for the survivable network design with
constrained ! -subgraph flows problem. Moreover, the
algorithm requires at most |>| + |=| iterations to terminate.

Proof. At any iteration of Alg. 2, exactly one of the two options
stated in Theorem 3 is picked by Alg. 2. If the algorithm picks
the first option, then there is an edge A such that H* ≥ 1/2, for
which Alg. 2 includes A in the solution set °. Since H* ≥ 1/2,
upon rounding it we have ⌈H*⌉ ≤ 2H*. We note that Alg. 2 only
includes in ° those edges with weight at least 1/2. Following
(Jain, 2001), we have that a basic feasible solution for iteration
? is valid for all iterations @ > ?. To see this, let H# be the solution
at iteration ? and H% be the solution for iteration @ for ? < @. We
have the following result for any pair of iterations ?, @ such that
? < @:

 ∑*∈1-R% R*H*
%
≤ ∑*∈1-R# R*H*

(4)

where °# are the edges included in the solution set of edges of
Algorithm 2 at iteration ? (and similarly for °%). If we apply Eq.
4 to iterations 1 to ?, we arrive at the following equations which
result in at least a 2-performance guarantee for Alg. 2.

S

!∈#$%!
T!U!& ≤ S

!∈#$%!"#
T!U!&$' ≤. . . ≤ S

!∈#$%#
T!U!'

[S
!∈#$%!

T!U!& + S
!∈%!"$$%!"#

T!U!&$'+. . . +S
!∈%#

T!U!'] ≤ [S
!∈#$%$

T!U!(+S
!∈%#

T!U!']

 ∑*∈1-R) R*H*
& +∑*∈R) R*H*

& ≤ 2∑*∈1 R*H*
& ≤ 2OPT

Under the first option, Alg. 2 checks if some A included in °#
belongs to ç(△"!) for some △"!⊆ =H, where =H is the vertex set
of a branch N(2G, =H , >H), with root 2G ∈ [for some [∈ ℋ. If
there is such an edge A that meets this condition, let 2* denote
the endpoint of A in this particular △"! . Let $ define the path
starting from this endpoint 2* of A, and which ends at the root
2G. Under constraint C2 of OP 3, all edges in the path $ from 2*
to 2G have a weight of at least 1/2. It follows that the algorithm
then includes in ° all edges of $, so that in future iterations, this
path is effectively removed from the residual graph. However,
paths starting from 2* to the leaves of =H may have weight less
than 1/2. Given that the path from 2* to 2G are removed in the
residual graph, it follows that all paths from 2* to the leaves of
=H have to be likewise removed in order to keep constraint C2
of OP3. For these removed edges that belong to some ç(△ ′"!),
the algorithm reduces all '(△ ′"!) by the respective number of
edges removed from ç(△ ′"!). Now, given that ℋ is admissible,
=H has at most % leaves, and the length of any path from the
vertex to a leaf is at most $. It follows that at most $% edges are
removed from =H in this case. Since each edge is rounded off,
this leads to a 2$%-approximation guarantee.

If ever Alg. 2 picks the second option where there are at most 3
edges in some set ç(△"!) for some △"!⊆ =H , and where =H is
the vertex set of a branch N(2G, =H , >H), with root 2G ∈ [for
some [∈ ℋ, the algorithm merely removes the upper bound for
all (⊆ =H . Suppose that this occurs at iteration ? . For
succeeding iterations greater than ?, at most a total of 3 edges
can be added to ç(△"!) for any △"!⊆ =H, since all edges with
zero weight are removed by the algorithm. Moreover, in case
some edge in ç(△"!) was included in ° at some prior iteration
(since its weight was at least 1/2), then the rounding-off
procedure of Alg. 2 multiplies the weight of the edge by 2. It
follows that '(() is violated by 2'(() + 3 for each (⊆ =H that
corresponds to some subset of vertices △"! connected to 2G.

It takes at most |>| + |=| iterations for the algorithm to
terminate, since the algorithm will definitely terminate if all
edges from the original graph are removed.

4.5 Time Complexity of Algorithm 2 and Separation Oracles
Separation Oracles

Lines 7-17 of Algorithm 2 could be done in polynomial time
since performing these steps of the Algorithm merely involves
checking if an edge has weight of at least 1/2 or if there is a set
△"! such that |ç(△"!)| ≤ 3 . The former can be done in
polynomial time given that the number of edges in the input
graph is polynomial. As for the latter, given that H is a basic
feasible solution, it has to be the case that if a positively
weighted edge in the branch of a !-subgraph has one endpoint
being the trunk vertex, then there has to be at least one other
positively weighted edge connected to its other endpoint
(following the constraints of OP 3 and the fact that H is a basic
feasible solution). It follows that in order to find the set △"! such
that |ç(△"!)| ≤ 3, the algorithm merely checks the number of
outgoing edges of each trunk vertex of its !-subgraphs. If a
certain trunk vertex is the endpoint of less than or equal to three
positively weighted edges, then the algorithm includes in its
candidate △"!, the vertices corresponding to the other endpoints
of these positively-weighted edges. It then checks if |ç(△"!)| ≤
3. If this condition is met, then the candidate △"! is the set that
is desired. If not, this implies that all other candidate subsets △"!
in this branch of the !-subgraph have |ç(△"!)| ≥ 4 (from the
constraint of OP 3 and the fact that the branch has a tree
structure). In this case, the algorithm moves on to the next trunk
vertex. Given that the number of trunk vertices is polynomial,
the procedures in this step is performed in polynomial time. This
leaves us with line 6 of Algorithm 2 which performs linear
programming over an exponential number of constraints of OP
3. However, from (Williamson and Shmoys, 2011), this linear
program could be solved in polynomial time using the ellipsoid
method – as long as polynomial-time separation oracles are
provided which indicate if a certain constraint of OP 3 is violated.

For this purpose, the following are polynomial-time separation
oracle methods to check constraint violations for OP 3.

1. (Constraint C0): ∀(⊆ =:∑*∈2(+) H* ≥ V(()
The separation oracle for this set of constraints is the
same as the separation oracle for the standard
survivable network design problem described in (Jain,
2001), (Williamson and Shmoys, 2011).

2. (Constraint C2):
∀[∈ ℋ,∀2G ∈ [,
given	the	branch	N(2G, =H , >H), let2L ∈ =H

be	any	parent	vertex	with	set	of	child	vertices	
Q ⊂ =H , and	let

2M ∈ =H	be	the	parent	vertex	of	2L.

Vol. 16 | No. 02 | 2023 SciEnggJ

301

We	have:g

#∈N

A#,"' ≤ H*"',"(

The separation oracle for this set of constraints is as follows. For
each [∈ ℋ, and for each branch N(2G, =H , >H) with root 2G ∈
[, the oracle computes for each vertex 2 ∈ =H the sum of
weights all edges with one endpoint being 2 , and another
endpoint being a child of 2 (where a vertex ? is a child of 2 if
there is a path from ? to the root 2G, whose first edge is A#,"). Let
this sum be denoted as H. Afterwards, the oracle checks if the
weight of the edge from 2 to its own parent (if it has one) is at
least as large as H. If this condition is not met, it follows that
there is a violation of constraint C2.

3. (Constraint C1):
∀[∈ ℋ,∀2G ∈ [given	the	branch	N(2G, =H , >H)	

we	have	the	following	for	all
△"!⊆ =H	that	are	connected	to	2

G:
g

#∈△"! ,%∈0-9

H*#,% + g

#∈△"! ,%∈0&-△"!

H*#,% ≤ '(△"!)

The separation oracle for this set of constraints is as follows. The
oracle first checks if no violation has been discovered by the
separation oracle for constraint C2. If no violation is seen, this
implies that the sum of weights of edges with one endpoint in 2G
and another in =H − {2G} represents the maximum value of
∑#∈△"! ,%∈0-9 + ∑#∈△"! ,%∈0&-△"! for any △"!⊆ =H. Let this sum
representing the maximum value be denoted as H . Given
condition Z1 of ', we have that '(△"!) is constant for all △"!⊆
=H, and therefore could be represented by some constant ®. The
oracle simply checks if H ≤ ®. If not, this implies that constraint
C1 is violated.

5. Conclusion

In this paper, we presented a variant of the survivable network
design problem which incorporates flow constraints over
subgraphs, where these flow constraints are in the form of upper
bounds over weights of outgoing edges of vertex subsets of the
subgraphs. While the general problem of verifying if a certain
set of edges in a graph cut of an arbitrary subgraph violates an
upper bound is computationally difficult, our proposed problem
considers certain types of subgraphs termed !-subgraphs. These
subgraphs have a tree structure composed of a trunk and several
branches. Under this graph structure, along with certain flow
conditions on flow constraints and edge weights, we construct
an efficient procedure that checks if a subset of outgoing edges
of a vertex subset of the subgraph violate the upper bound
provided by the flow constraint. This allows for the construction
of a polynomial-time algorithm based on iterative rounding and
linear programming, where the linear programming component
of the algorithm makes use of polynomial-time separation
oracles under the ellipsoid method. Our proposed algorithm has
(2$%, 2'(() + 3)-performance where $ is the maximum length
of any path that connects the root and leaves of any branch of a
!-subgraph, while % is the maximum number of leaves of any
branch of any !-subgraph, and where (is a subset of a branch of
a ! -subgraph that is subjected to flow constraints. The
approximation guarantee of our algorithm relies on the fact that
at each iteration of the algorithm, there may either be at least one
edge with weight of at least 1/2, or there is a vertex subset of
some branch of a !-subgraph such that the number of outgoing
edges of the vertex subset is at most 3.

REFERENCES

AUSIELLO, GIORGIO, et al. Complexity and approximation.

2012. Combinatorial optimization problems and their
approximability properties. Springer Science & Business
Media

BATRA J, GARG N, KUMAR A, MOMKE T, WIESE A. 2014.

New approximation schemes for unsplittable flow on a path.
In Proceedings of the twenty-sixth annual ACM-SIAM
symposium on discrete algorithms. p. 47–58. SIAM.

BLAND RG, GOLDFARB D, TODD MJ. 1981. The ellipsoid

method: A survey. Operations research. 29(6):1039–1091.

CHECKURI C, ENE A, VAKILIAN A. 2012. Prize-collecting

survivable network design in node-weighted graphs. In
Approximation Randomization and Combinatorial
Optimization. Algorithms and Techniques: 15th
International Workshop. APPROX 2012. and 16th
International Workshop. RANDOM 2012. Cambridge MA.
USA. August 15-17 2012. Proceedings. p. 98–109. Springer.

GUO B, QIAO C, WANG J, YU H, ZUO Y, LI J, CHEN Z, HE

Y. 2013. Survivable virtual network design and embedding
to survive a facility node failure. Journal of Lightwave
Technology. 32(3):483–493.

IBARRA OH, KIM CE. 1975. Fast approximation algorithms

for the knapsack and sum of subset problems. Journal of
the ACM (JACM). 22(4):463–468.

JAIN K. 2001. A factor 2 approximation algorithm for the

generalized steiner network problem. Combinatorica.
21(1):39–60.

LAU LC, SINGH M. 2013. Additive approximation for bounded

degree survivable network design. SIAM Journal on
Computing. 42(6):2217–2242.

MOMKE T, SVENSSON O. 2011. Approximating graphic tsp

by matchings. In 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science. p. 560–569. IEEE.

SON S, WI G, PARK K. 2022. Situation-aware survivable

network design for tactical environments. Applied Sciences.
12(13):6738.

VAZIRANI VJ. 2013. Approximation algorithms. Springer

Science & Business Media.

WILLIAMSON DP, GOEMANS MX, MIHAIL M, VAZIRANI

VJ. 1995. A primal-dual approximation algorithm for
generalized steiner network problems. Combinatorica.
15(3):435–454.

WILLIAMSON DP, SHMOYS DB. 2011. The design of

approximation algorithms. Cambridge university press.

 SciEnggJ Vol. 16 | No. 02 | 2023 302

6. Appendix

6.1 Weakly Supermodular Property of t

This proof for showing the weakly supermodular property of V
follows Lemma 11.20 of (Williamson and Shmoys, 2011).
Firstly, for the trivial case we have V(∅) = 0, which is weakly
supermodular. Otherwise, consider again the following graph:

We observe four inequalities: (1) V(Z) ≤ max(V(Z −

[), V(Z ∩ [)), (2) V(Z) ≤ max(V([− Z), V(Z ∪ [)) , (3)
V([) ≤ max(V([− Z), V(Z ∩ [)), and (4) V(Z) ≤

max(V(Z − [), V(Z ∪ [)) . These inequalities follow by a
simple counting argument. For instance, for the first inequality,
edges with an endpoint in Z − [and another in Z ∩ [do not
contribute to V(Z), but they contribute to max(V(Z − [), V(Z ∩
[)). To arrive at the weakly supermodular property for V, we
gather the minimum of V(Z − [) , V([− Z) , V(Z ∪ [) and
V(Z ∩ [). If the minimum is V(Z − [), we add inequalities (1)
and (4) to arrive at the inequality V(Z) + V([) ≤ V(Z ∪ [) +
V(Z ∩ [). If the minimum is V([− Z), we add inequalities (2)
and (3) to arrive at the inequality V(Z) + V([) ≤ V(Z ∪ [) +
V(Z ∩ [). If the minimum is V(Z ∪ [), we add inequalities (2)
and (4) to arrive at the inequality V(Z) + V([) ≤ V(Z − [) +
V([− Z). Lastly, if the minimum is V(Z ∩ [) , we add
inequalities (1) and (3) to arrive at the inequality V(Z) +
V([) ≤ V(Z − [) + V([− Z) . In all these cases for the
minimum, we have shown that either V(Z) + V([) ≤ V(Z −
[) + V([− Z) or V(Z) + V([) ≤ V(Z ∪ [) + V(Z ∩ [) ,
thereby showing that V is weakly supermodular.

6.2 Illustrations for Theorem 1 and 2

In this section of the Appendix, we provide some simple
illustrations of the ideas behind Theorem 1 and Theorem 2 of
(Jain, 2001). Naturally, more comprehensive explanations and
proofs of these Theorems are described in the seminal paper of
(Jain, 2001). These ideas would be applied to Theorems 3 and 5
which are their counterparts for the survivable network design
problem with constrained !-subgraph flows considered in this
paper. As mentioned, the proof of Theorem 1 relies on the results
of Theorem 2 which states four nice properties of basic feasible
solutions of the standard survivable network design problem.
The first three properties listed in Theorem 2 (i.e. tightness,
linear independence of (∈ ℒ, as well as |ℒ| = |>|) are all used
to prove the important result that ℒ is laminar. To see this,
consider the following graph, where all edges (dashed lines)
have a cost of 1.0.

Suppose that in the above graph, vertex Z is required to have one
path connecting it to vertex >. One basic feasible solution is to
give a weight of 1.0 to edges A8N and AN1 resulting in a solution
with total cost of 2.0. In this case, we can form several possible
collections ℒ of tight sets such that |ℒ| = |>| . These are as
follows (orange circles), where the tight sets are linearly
independent and laminar.

To see that they are linearly independent, we consider the top
left configuration of tight sets. In this case, we have one tight set
(& = {Z} and another as (' = {Z, Q} such that I((&) = {A8N}
and I((') = {AN1}. Since only two edges have positive weight,
let the first dimension of the respective characteristic vectors
denote edge A8N, and let the second dimension denote AN1. This
gives s+) = [1,0] and s+* = [0,1] which are linearly
independent. From (Jain, 2001), as long as the solution is a basic
and feasible solution to the survivable network design problem
(which could always be arrived at using standard linear
programming properties), then the respective characteristic
vectors are independent and any non-laminar collection of tight
sets can be transformed from a non-laminar solution to a laminar
solution by means of an “uncrossing” process. For instance, the
following figure shows how the non-laminar collection of tight
sets at the left is uncrossed to arrive at a laminar collection of
tight sets to the right.

A solution to the above graph however can be a non-basic
solution. For instance, a similar solution with a total cost of 2.0
can be arrived at by assigning a weight of 0.33 to all edges. This
solution still meets the connectivity requirements of connecting
vertex Z with vertex [. However, the resulting collection of
tight sets would no longer be laminar nor linearly independent.
For instance, a possible collection ℒ of tight sets such that |ℒ| =
|>| is as follows:

Vol. 16 | No. 02 | 2023 SciEnggJ

303

Here, we have (& = {Z}, (' = {>}, (P = {Z, Q}, (Q = {[, >},
(O = {[, >, c}, and (Y = {Z, [}, so that I((&) = {A89 , A8N , A8Z},
I((') = {A91 , AN1 , AZ1} , I((P) = {A89 , AN1 , A8Z} , I((Q) =
{A89 , AN1 , AZ1} , I((O) = {A89 , AN1 , A8Z} and I((Y) =
{A91 , A8N , A8Z}. The sets (P and (Y cross, resulting in ℒ being
non-laminar. In fact, for any non-basic feasible solution to the
described problem, any collection of tight sets such that |ℒ| =
|>| would have a pair of crossing sets. Moreover, it could be
shown that the characterstic vectors of (& to (Y are not linearly
independent.

Arriving at a laminar collection ℒ is important in order to prove
the fact any basic feasible linear programming solution H to
survivable network design problem has an edge whose weight is
at least 1/2 . The proof for this uses a counting argument,
whereby if some basic feasible solution H has a weight of less
than 1/2 for each edge in > , then the number of counted
endpoints would exceed 2|>|, providing a contradiction. As an
example of this counting argument, consider a survivable
network design problem whose corresponding network graph
has four vertices 2&, 2', 2P, 2Q such that each pair of vertices is
required to be connected by at least one path. Suppose that a
laminar solution of this problem is shown as follows, where
(& = {2&}, (' = {2&, 2'}, (P = {2P}, and (Q = {2Q}. Given the
condition that |ℒ| = |>|, it follows that there are 4 edges with
positive weight in the solution. Let (', (P, (Q be termed as “root
sets” given that they are not contained in another tight set. On
the other hand, let (& be a “child set” given that it is contained
in a “parent set” which is ('. Now, suppose that all edges in a
basic feasible solution H all have weight less than 1/2. Given
that connectivity requirements are all integral, this implies that
outgoing edges from I((&), I(('), I((P) and I((Q) have to
number at least 3, in order to be greater than or equal to 1. The
counting argument then goes as follows. Since there have to be
at least three edges in I((&) , there are three edges with an
endpoint being 2&. In this case, assign a value of two to (&, and
let the surplus of one be given to its parent which is ('. Similarly,
since there have to be at least three edges in I((P) and I((Q),
assign a value of three to (P and (Q given that they have no
parent. For (', it cannot be the case that all edges in I((') are
the same as in I((&) due to the linear independence requirement.
It follows that there have to be at least one edge in I((') with
an endpoint being 2'. It follows that (' is assigned a value of
two, one for the edge with endpoint being 2', and another for
the surplus of one given by (&. It follows that the total value for
(& to (Q is counted as 10, resulting in a total number of edges of
5. This contradicts the fact that only 4 edges are part of the
solution.

On the other hand, if a collection of sets is not laminar, then it is
possible that each edge is assigned a weight less than 1/2 while
not arriving at a contradiction under a counting argument. For
instance, consider the figure shown before involving six tight
sets from a non-basic feasible solution. Here, all edges have
weight less than 1/2, but the solution remains feasible. For the
survivable network design with constrained !-subgraph flows

problem considered in this paper, a counterpart of Theorem 1 is
Theorem 5 described below. In addition, the counting method
used to prove Theorem 2 has its counterpart in Lemma 11 below.

6.3 Technical Results

Given a graph <(=, >) , let (⊆ = and (′ ⊆ = be two sets of
vertices. For ease of notation, we denote the set of edges with
one endpoint in (and another endpoint in (′ as A[+,+<] ⊆ >. In
case (is a singleton, i.e. (= {2}, the notation A[+,+<] = A[",+<]
denotes the set of edges with one endpoint as 2 and another
endpoint being a vertex in (′. If both (and (′ are singletons, i.e.
(= {2} and (′ = {2′}, then A[","<] = A","<, i.e. the unique edge
connecting 2 and 2′. For all Lemmas, Theorems and Definitions
in this Appendix, we assume that the input to OP 3 is a valid
input consisting of an admissible graph <(=, >) with a $% -
admissible collection of vertex sets ℋ , together with an
admissible flow constraint function ' , and an admissible
connectivity requirement function V.

Definition 25 Given input graph <(=, >) and solution H to OP
3, define the function R: 21 → ℝ as follows, whereby for all sets
of edges A ⊆ >, we have:

 R(A) = ∑*∈* H* (5)

Definition 26 Let <(=, >) be the admissible input graph to OP
3 that results in a basic feasible solution H, such that all edges
in > have positive weight, and all zero weighted edges are
removed. We define the function ™ as:

™: ℝ|1| × = × = → {0,1}|1|

The function ™ works as follows. Each edge in > is assigned a
coordinate in the output vector of ™. An input to ™ consists of a
tuple (H ∈ ℝ, (⊆ =, N ⊆ =). Given this input, for each edge
A ∈ > with positive weight H* under H , and which has one
endpoint in (and another endpoint in N, ™ assigns a value of 1
to the coordinate of its output vector that corresponds to A .
Otherwise, ™ assigns 0.

6.4 Theorem 5

In this Appendix, we first present Theorem 5 below which is
needed for proving Theorem 3. The proof for Theorem 5 is built
from a series of Lemmas described in the next subsection.

Theorem 5 Let H be a basic feasible solution of OP 3. Given H,
there is a collection ℒ of subsets of vertices with the following
properties:

1. for all (∈ ℒ, (is tight.
2. the characteristic vectors s+ for all (∈ ℒ are linearly

independent.
3. |ℒ| = |è| + |0| = |>|, where è refers to a collection of

tight sets of vertices

with respect to connectivity requirements, and 0 is a collection
of tight sets of vertices with respect to flow constraints, and >
refers to the set of edges that have nonzero weight in H, i.e. H* >
0.

 4. ℒ is laminar.

 SciEnggJ Vol. 16 | No. 02 | 2023 304

6.5 Technical Lemmas

Figure 2: Figure illustrating a tight set △+)* (orange circle) that

contains the set △++* (blue circle), where both △+)* and △++* are

subsets of ., (green box). Both △+)* and △++* are connected to the

root vertex (blue circle) which is in turn a trunk vertex of the trunk

(trunk edges are represented by red edges)

Lemma 1 Given a basic feasible solution H to OP 3, ∀[∈ ℋ,
∀2G ∈ [, given N(2G, =H , >H), let △"-! ,△")!⊆ =H, such that △"-!⊆

△")! and △")! is tight. We have that △"-! is also tight, and:

g

#∈△"-!
,%∈0-9

H*#,% + g

#∈△"-!
,%∈0&-△"-!

H*#,%

= g

#∈△")!
,%∈0-9

H*#,% + g

#∈△")!
,%∈0&-△")!

H*#,%

Proof. From the given, we have that △")! is tight, or that:

g

#∈△")!
,%∈0-9

H*#,% + g

#∈△")!
,%∈0&-△")!

H*#,% = '(△")!)

From △"-!⊆△")! , we enumerate the following sets of edges as
illustrated in Fig. 2:

e0: set of edges with one endpoint being 2G and another
endpoint in △"-!

e1: set of edges with one endpoint in △"-!− {2
G} and another

in [−△")!
e2: set of edges with one endpoint in △"-! and another in
= − =H
e3: set of edges with one endpoint in △"-! and another in △")!
e4: set of edges with one endpoint in △")!−△"-! and another in

=H −△")!
e5: set of edges with one endpoint in △")!−△"-! and another in

= − =H

It follows that:

g

#∈△")!
,%∈0-9

H*#,% + g

#∈△")!
,%∈0&-△")!

H*#,%

= R(A1) + R(A2) + R(A4) + R(A5)

However, given constraint C2, we have
R(A4) + R(A5) ≤ R(A3)

Since H is feasible, we have R(A1) + R(A2) + R(A3) ≤ '(△"-!).
Moreover, from condition Z1 of ', we have '(△"-!) = '(△")!).
This leads to the following set of equations:

'(△")!) = R(A1) + R(A2) + R(A4) + R(A5)

 ≤ R(A1) + R(A2) + R(A3)
 = '(△"-!)

which implies that R(A1) + R(A2) + R(A4) + R(A5) = R(A1) +
R(A2) + R(A3), thereby proving the second claim of the Lemma.
In addition, R(A1) + R(A2) + R(A3) = '(△"-!) , or that △"-! is
tight with respect to its flow constraint.

Figure 3: Figure illustrating tight sets / ∈ 1 (blue circle) and 2 ∈
1 (green circle). / is tight with respect to flow constraints given

by 3 and is connected to a trunk vertex (blue vertex). 2 is tight

with respect to connectivity requirements given by (.

Lemma 2 Given a basic feasible solution H to OP 3, let (, N ∈
ℒ be two tight sets that cross, where N is tight with respect to
connectivity requirements given by V, and (⊂ [for some [∈
ℋ is tight with respect to flow constraints given by '. We have
V(N) = V(N − () . In addition, N − (is tight with respect to
connectivity requirements given by V, and (− N is tight with
respect to flow constraints given by '.

Proof. We first observe that under condition F1 of V, we have
zero connectivity requirements such that:

∀[∈ ℋ,∀? ∈ [, ∀@ ∈ = − {?}: O#% = 0

Thus for any [∈ ℋ, V(() = 0 for all (⊂ [. Since (∩ N ⊂ [,
we have:

V(N) = V({N ∩ (} ∪ {N − (})
 = V(N − () (6)

As (⊂ [is tight with respect to flow constraints, it follows that
(is a set △"! that is connected to some trunk vertex 2G ∈ [.
Given this, We now enumerate the following sets of edges as
illustrated in Fig. 3:

 e1: set of edges with one endpoint in ((− N) and another
in N ∩ (

 e2: set of edges with one endpoint in N ∩ (and another in
= − (N ∪ ()

 e3: set of edges with one endpoint in N − (and another in
= − (N ∪ ()

 e4: set of edges with one endpoint in N − (and another in
N ∩ (

 e5: set of edges with one endpoint in N − (and another in
(− N

 e6: set of edges with one endpoint in ((− N) − {2G} and
another in = − (N ∪ ()

It follows that I(N) is composed of edges belonging to A3, A2,
A1, and A5 or that:

R(A1) + R(A2) + R(A3) + R(A5) = R(I(N)) = V(N)

On the other hand, given that (is tight with respect to flow
constraints given by ', we have:

R(A2) + R(A4) + R(A5) + R(A6) = '(()

Vol. 16 | No. 02 | 2023 SciEnggJ

305

Given that H is feasible, we also have:
 R(A3) + R(A4) + R(A5) ≥ V(N − ()
But from constraint C2, it should hold that:
 R(A2) + R(A4) ≤ R(A1)
Given that the respective endpoints of edges in A2 and A4 that
are in N ∩ (are children of parent endpoints in (− N (where the
parent-child connection is made by edges in A1), given that (−
N contains the root 2G . This leads to the following set of
equations:

V(N − () ≤ R(A3) + R(A4) + R(A5)
 ≤ R(A3) + R(A2) + R(A4) + R(A5)
 ≤ R(A3) + R(A2) + R(A1) + R(A5)
 = V(N)

However, given that V(N − () = V(N) as pointed out above, the
above inequalities should all hold with equality, therefore
implying that V(N − () = R(A3) + R(A4) + R(A5), or that N −
(is tight with respect to connectivity requirements given by V.
Lastly, to show that (− N is tight with respect to flow
constraints given by ', we use Lemma 1 and the fact that (−
N ⊂ (, and that (is tight. This implies that (− N is tight with
respect to flow constraints given by '.

Lemma 3 Given a basic feasible solution H to OP 3, suppose
that N, (∈ ℒ are two tight sets that cross, where N is tight with
respect to connectivity requirements given by V, and where (⊂
[for some [∈ ℋ is tight with respect to flow constraints given
by ' . We have that the sum of weights for edges with one
endpoint in N ∩ (and another endpoint in = − (N ∪ () is zero,
i.e.

g

#∈H∩+,%∈0-(H∪+)

H*#,% = 0

Proof. For this proof, we use the same set of edges A1 -A6
enumerated in Lemma 3. This Lemma is equivalent to saying
that R(A2) = 0. Note that the assumptions of this Lemma are
exactly the same as the assumptions of Lemma 2. Hence, we can
apply Lemma 2, where we have V(N) = V(N − (), and that N −
(is tight with respect to connectivity requirements given by V.
This leads to the following set of equations:

V(N − () = R(A3) + R(A4) + R(A5)
= R(A3) + R(A2) + R(A4) + R(A5)

 = V(N)

The above equalities would be satisfied if and only if R(A2) = 0,
thereby proving the statement of the Lemma.

Lemma 4 Given a basic feasible solution H to OP 3, let ℒ be a
collection of tight sets with respect to either connectivity
requirements or flow constraints. Suppose that there are two
tight sets (, N ∈ ℒ that cross, where N is tight with respect to
connectivity requirements given by V, and (is tight with respect
to flow constraints given by '. From (and N, we can form new
tight sets ´ and ¨ such that ´ and ¨ are laminar and sH +
s+ = s[+ s\.

Proof. Firstly, from Lemma 2, N − (is tight with respect to
connectivity constraints given by V , and (− N is tight with
respect to flow constraints given by '. We can thus set ´:= N −
(and ¨:= (− N where both ´ and ¨ are tight with respect to
their own respective constraints. To show that sH + s+ = s[+
s\, we use the same set of edges A1-A6 enumerated in Lemma
3. The edges in I(N), ç((), ç((− N) and I(N − () are:

I(N) = ⋃ {A1, A2, A3, A5}
 ç(() = ⋃ {A2, A4, A5, A6}

 I(N − () = ⋃ {A3, A4, A5}
 ç((− N) = ⋃ {A1, A5, A6}

It follows that the only edges in I(N) ∪ ç(() that are not found
in I(N − () ∪ ç((− N) are edges in A2, or that:
(sH + s+) − (sH-+ + s+-H) = 2 × ™[H, N ∩ (, = − (N ∪ ()]

However, as stated in Lemma 3, we have R(A2) = 0. Therefore
2 × ™[H, N ∩ (, = − (N ∪ ()] = 0 , or that sH + s+ = sH-+ +
s+-H = s[+ s\ as claimed.

Figure 4: Figure illustrating two crossing sets /, 2 ∈ 1 such that

both / (blue circle) and 2 (green circle) are tight with respect to

flow constraints given by 3. Both / and 2 are connected to the

same root represented by a trunk vertex (blue circle) and are

subsets of .,.

Lemma 5 Given a basic feasible solution H to OP 3, let ℒ be a
collection of tight sets with respect to either connectivity
requirements or flow constraints. Suppose that there are two
tight sets (, N ∈ ℒ that cross, where both (and N are tight with
respect to flow constraints given by '. From (and N, we can
form new tight sets ´ and ¨ such that ´ and ¨ are laminar and
sH + s+ = s[+ s\.

Proof. We consider the following cases for which (and N
may cross.

Case 1: (⊂ =8 and N ⊂ =9, where =8 and =9 are sets of
vertices of distinct branches N(28

G , =8, >8) and
N(29

G , =9 , >9) respectively, where N(2G, =8, >8) ⊂
<9([, >′) and N(2G, =8, >8) ⊂ <9<([′, >′′) , for some
[,[′ ∈ ℋ with [≠ [′

Case 2: (⊂ =8 and N ⊂ =9, where =8 and =9 are sets of
vertices of distinct branches N(28

G , =8, >8) and
N(29

G , =9 , >9) respectively, where N(2G, =8, >8) ⊂
<9([, >′) and N(2G, =8, >8) ⊂ <9([, >′), for some [∈
ℋ

Case 3: (, N ⊂ =H and =H is the set of vertices of a
branch N(2G, =H , >H), whose root is a trunk vertex 2G ∈
[of some [∈ ℋ

We first note that cases 1 and 2 do not occur given conditions
G1 and G2 for ℋ to be admissible, whereby under G1, for any
pair [,[′ ∈ ℋ, with [≠ [′, we have that [and [′ are disjoint.
In addition, under G2, for each [∈ ℋ , any pair of distinct
branches are disjoint. It follows that =8 and =9 in both cases are
disjoint. Given that (⊂ =8 and N ⊂ =9, and that ' can only be
tight for subsets of =8 and =9 that are connected to their
respective root vertices, it follows that (∩ N = ∅.

For case 2, we enumerate the possible edges in ç(N) , ç(() ,
ç((∩ N), and ç((∪ N) as follows. These edges are illustrated
in Fig. 4.

 SciEnggJ Vol. 16 | No. 02 | 2023 306

e1: set of edges from 2G to N − (
e2: set of edges from 2G to N ∩ (
e3: set of edges from 2G to (− N
e4: set of edges from N − (to =H − (N ∪ ()
e5: set of edges from N − (to = − =H
e6: set of edges from N ∩ (to =H − (N ∪ ()
e7: set of edges from N ∩ (to = − =H

 e8: set of edges from (− N to = − =H
 e9: set of edges from (− N to = − (N ∪ ()

e10: set of edges from N − (to (− N

 From the above enumerations of edges, we thus have:

ç(N) = ⋃ {A3, A4, A5, A6, A7, A10}
 ç(() = ⋃ {A1, A6, A7, A8, A9, A10}
 ç(N ∩ () = ⋃ {A1, A3, A6, A7}
 ç(N ∪ () = ⋃ {A4, A5, A6, A7, A8, A9}

We claim that there are no edges in A10. To see this, note that (
and N correspond to subsets of vertices of =H that are connected
to the root 2G given condition Z2 of ' , whereby a subset of
vertices of =H becomes tight with respect to flow constraints
given by ' if and only if the subset is a set connected to 2G. It
follows that for any vertex ? ∈ (, there is a path from ? towards
the root 2G. Similarly, for any vertex @ ∈ (, there is a path from
@ towards the root 2G. Suppose for that there is an edge in A10
with positive weight under solution H that connects ? ∈ N − (⊂
N to @ ∈ (− N ⊂ (. Given that ? is an endpoint of this positively
weighted edge, from constraint C2 of OP3, all paths from ? to
the root 2G should also have positive weight. Similarly, given
that @ is an endpoint of some positively weighted edge in A10,
all paths from @ to the root 2G should also have positive weight.
It follows that we could then construct a positively weighted
path from the root 2G towards ?, followed by an edge from ? to @
(using the edge in A10) then from @ to the root 2G. This creates a
cycle which contradicts the tree structure of N(2G, =H , >H) .
Therefore there should be no edge in A10.

From Lemma 1, we have that N ∩ (is tight given that N ∩ (⊆
N and N ∩ (⊆ (, and both (and N are tight. To see that N ∪ (
is also tight, we note the following set of equations given that H
is feasible and N,(, (∩ N are all tight, and that R(A10) = 0 as
shown in the preceding paragraph.

'(N) = R(ç(N)) = R(A3) + R(A4) + R(A5) + R(A6) + R(A7)
'(() = R(ç(()) = R(A1) + R(A6) + R(A7) + R(A8) + R(A9)
'(N ∩ () = R(ç(N ∩ ()) = R(A1) + R(A3) + R(A6) + R(A7)

 '(N ∪ () ≥ R(ç(N ∪ ()) = R(A4) + R(A5) + R(A6) +
	R(A7) + R(A8) + R(A9)

From condition Z1 of ' , we have '(N) = '(() = '(N ∩ () ,
which implies that:

5(71) + 5(73) + 5(76) + 5(77) = 5(73) + 5(74) + 5(75) + 5(76) + 5(77)

 = 5(71) + 5(76) + 5(77) + 5(78) + 5(79)

or equivalently:

R(A1) = R(A4) + R(A5)
R(A3) = R(A8) + R(A9)

Combining all of the above leads us to:
'(N ∪ () ≥ R(A4) + R(A5) + R(A8) + R(A9) + R(A6) + R(A7)
= R(A1) + R(A8) + R(A9) + R(A6) + R(A7)
= '(() = '(N)

But given that '(N) = '(() = '(N ∩ () = è(N ∪ () from
condition Z1 of ' , the above equations should all hold with
equality, which thus implies that N ∪ (is tight with respect to
flow constraints given by '. We can thus set ´:= N ∩ (and

¨:= N ∪ (, where both ´ and ¨ are tight. To show that sH +
s+ = s[+ s\, from the above enumeration of edges, we can see
that edges which do not belong to ç(N ∩ () ∪ ç(N ∪ () are those
edges in A10, or that:

(sH + s+) − (sH∩+ + sH∪+) = 2 × ™[H, N − (, (− N]

However, as pointed out, there are no edges in A10 due to the
tree structure of N(2G, =H , >H). Thus we have sH + s+ = s[+
s\ as claimed.

Lemma 6 Given a basic feasible solution H to OP 3, let ℒ be a
collection of tight sets with respect to either connectivity
requirements or flow constraints. Suppose that there are two
tight sets (, N ∈ ℒ that cross. From (and N, we can form new
tight sets ´ and ¨ such that ´ and ¨ are laminar and sH +
s+ = s[+ s\.

Proof. We consider the following cases to prove the Lemma:

Case 1: (and N are both tight with respect to connectivity
requirements given by V.
Case 2: (and N are both tight with respect to flow constraints
given by '.
Case 3: N is tight with respect to connectivity requirements
given by V and (is tight with respect to flow constraints given
by '.

Cases 2 and 3 are handled by Lemmas 4 and 5 respectively. This
leaves us with case 1. However, for case 1, this is the same case
of crossing sets considered in (Jain, 2001), whereby under a
weakly supermodular function V, any pair of crossing tight sets
(and N results in either (1) V(() + V(N) ≤ V(N − () + V((−
N) or (2) V(() + V(N) ≤ V(N ∪ () + V(N ∩ () occurs. If (1)
occurs, we set ´:= N − (and ¨:= (− N. If (2) occurs, we set
´:= N ∪ (and ¨:= N ∩ (. From (Jain, 2001), in either case,
both ´ and ¨ are tight with respect to connectivity requirements,
and sH + s+ = s[+ s\.

Lemma 7 Given a basic feasible solution H to OP 3, let ℒ be a
collection of tight sets with respect to either connectivity
requirements or flow constraints. Suppose that (⊂ = is a tight
set (with respect to either connectivity requirements or flow
constraints) such that s+ ∈ ∞$W±(ℒ) and (crosses a set N ∈ ℒ.
From Lemma 6, there is a tight set (′ that does not cross N and
such that s+< ∈ ∞$W±(ℒ)

Lemma 8 Given a basic feasible solution H to OP 3, let ℒ be a
collection of tight sets with respect to either connectivity
requirements or flow constraints. It follows from Lemma 7 that
if ∞$W±(ℒ′) ≠ ℝ|1| , there is a tight set (such that
s+ ∈ ∞$W±(ℒ′) and ℒ′ ∪ {(} is a laminar family.

Thus, given Lemmas 7 and 8 above, a procedure is outlined
which shows how to construct the collection ℒ with properties
described in Theorem 5. This construction procedure for
building a collection of laminar, linearly independent tight sets
thus proves Theorem 5.

6.3 Proof of Theorem 3

The following Definitions are needed for Lemma 9 which forms
the core idea behind the proof of Theorem 3. Lemma 9 builds on
the results of Theorem 5 which was proved in the previous
subsection.

Definition 27 A forest ℱ is a partial ordering of sets (∈ ℒ.
Each tree in ℱ has a root that consists of a set not contained in
any other set in ℒ. Given (∈ ℒ such that (⊂ (′ for some (′ ∈
ℱ , the set (becomes a child of (′ in ℱ , and (′ becomes the

Vol. 16 | No. 02 | 2023 SciEnggJ

307

parent of (if (′ is the minimal set that contains (. A node (∈ ℱ
owns vertex 2 if (is the lowest (or minimal) set that contains 2
with respect to the partial ordering defined by ℱ.

Definition 28 Given input graph <(=, >) and basic feasible
solution H to OP 3, let ℒ be the laminar collection of tight sets
with properties described in Theorem 5. Suppose that (∈ ℒ is a
tight set with respect to either connectivity requirements or flow
constraints. From (Vazirani, 2013), a corequirement function
≥]: 2

0 → ℚ under connectivity requirements given by V is as
follows:

≥](() =
1

2
|I(()| − V(() = g

*∈2(+)

1

2
− H*

In our setting, we use define another corequirement function
≥^: 2

0 → ℚ under flow constraints given by ' as follows:
 ≥^(() =

&
'
|ç(()| − '(() = ∑*∈J(+)

&
'
− H*

It follows that if for some tight set (∈ ℒ, we have ≥](() = 1/2,
or ≥^(() = 1/2, then |I(()| or |ç(()| is odd respectively.

Lemma 9 Given input graph <(=, >) and basic feasible
solution H to OP 3, let ℒ be the laminar collection of tight sets
with properties described in Theorem 5. Suppose that (∈ ℒ is a
tight set with respect to connectivity requirements given by V,
and which has r children and owns ¥ endpoints, where r +
¥ = 3. Moreover, let each child (′ of (have a corequirement of
either ≥^((′) = 1/2 if the child (′ is tight with respect to flow
constraints given by ', or ≥]((′) = 1/2 if the child (′ is tight
with respect to connectivity requirements given by V. We have
≥](() = 1/2

Proof. For this Lemma, we follow the proof from (Vazirani,
2013). From the assumptions, each child (′ of (has either
≥]((′) = 1/2 or ≥^((′) = 1/2. This implies that each child of (
an odd number of outgoing edges. We now consider the
following cases:

• (owns no endpoints. In this case, we have ¥ = 3, and
all edges with an endpoint in a child of (has to have
an endpoint outside of ((since (owns no endpoint).
Therefore, we have |I(()| as the sum of the number
of outgoing edges of (’s three children. Since each
child of (has an odd number of outgoing edges, it
follows that |I(()| is odd.

• (owns one endpoint. In this case, we have ¥ = 2. Let
(′ and (′′ denote the two children of (. Since each
child has an odd number of outgoing edges, we have
|I((′)| + |I((′′)| as even (and similarly for either
|I((′)| + |ç((′′)| , |ç((′)| + |I((′′)| or |ç((′)| +
|ç((′′)|). Adding this number to the edge whose
endpoint is owned by (, we have that |I(()| is odd.

• (owns two endpoints. In this case, (has only one
child with |I(()| as odd. Adding this number to the
two edges whose endpoints are owned by (, we have
that |I(()| is odd.

• (has three endpoints. In this case, (has no children,
and we trivially have |I(()| = 3 which is odd.

It follows that in all cases considered above, we have |I(()| as
odd, which implies that ≥](() = ±/2 for some odd ± ≥ 1 .
Following (Vazirani, 2013), we have:

≥](() ≤g

+<

≥]((′) +g

+<<

≥^((′′) +g

*

1

2
− H*

where (′ ranges over the children of (that are tight with respect
to connectivity requirements given by V, and (′′ ranges over the
children of (that are tight with respect to flow constraints given
by '. The first inequality follows from the fact that there may be
some edges with an endpoint in a child of (, and another
endpoint in ((outside of the child). Given that &

'
− H* is less

than 1/2, we consider the following cases:

1. If (has one child (′ and owns two endpoints such that
≥]((′) = 1/2 or ≥^((′) = 1/2, we have ≥](() ≤ 1/2 +

[2 × (
&
'
− H*)] < 3/2.

2. If (has two children and owns one endpoint we have
≥](() ≤ 1 + [1 × (

&
'
− H*)] < 3/2.

3. If (has three children and owns no endpoints, it should
not be the case all edges with an endpoint in a child of (
have their opposite endpoints outside of (since this
violates linear independence of ℒ . Therefore we have
≥](() < 3/2

Given that |I(()| is odd, and ≥](() < 3/2 from the above cases,
we have ≥](() = 1/2 as stated in the Lemma.

Lemma 10 Given input graph <(=, >) and basic feasible
solution H to OP 3, let ℒ be the laminar collection of tight sets
with properties described in Theorem 5. Suppose that (∈ ℒ is a
tight set with respect to connectivity requirements given by V,
and which has two children (′, (′′ ∈ ℒ, and that for (′, we either
have ≥]((′) = 1/2 or ≥^((′) = 1/2. It follows that (must own
at least one endpoint.

Proof. We follow the proof shown in (Vazirani, 2013) which
uses contradiction. Namely, suppose that (does not own any
endpoint. Given linear independence of characteristic vectors of
sets in ℒ, we have that edges in I((′) (or ç((′))should not be the
same edges in I(() or I((′′) (or ç((′′)). Now, if ≥^((′) = 1/2,
given that (owns no endpoints, we have:

∑.∈01,2∈340 [1/2 − H5,,.] + ∑.∈011,2∈01 [1/2 − H5,,.] = J6(K′) =
7
8 (7)

Similarly, if instead we have ≥]((′) = 1/2, given that (owns
no endpoints, we have:

∑.∈01,2∈340 [1/2 − H5,,.] + ∑.∈011,2∈01 [1/2 − H5,,.] = J9(K′) =
7
8 (8)

Given that for (′, we either have ≥]((′) = 1/2 or ≥^((′) = 1/2,
then either |I((′)| or |ç((′)| is odd. Given Eq. 7 or 8, this
implies that the parity of the number of edges with an endpoint
in (′ and another endpoint in = − (is different from the parity
of the number of edges with an endpoint in (′ and another
endpoint in (′′ . This difference in parity implies that the
corequirement ≥](() is different from ≥^((′′) if (′′ is tight with
respect to flow constraints. Similarly, if (′′ is tight with respect
to connectivity requirements, we have ≥](() as different from
≥]((′′). Suppose that (′′ be tight with respect to flow constraints.
We have:

J9(K) = J6(K′′) + ∑.∈01,2∈340 [1/2 − H5,,.] − ∑.∈011,2∈01 [1/2 − H5,,.] (9)

which implies that:

'!(() − '"((′′) = ,
#∈%&,(∈)*%

[1/2 − 1+,,.] − ,
#∈%&&,(∈%&

[1/2 − 1+,,.]

Similarly, if (′′ is tight with respect to connectivity requirements,
we have:

 SciEnggJ Vol. 16 | No. 02 | 2023 308

J9(K) = J9(K′′) + ∑.∈01,2∈340 [1/2 − H5,,.] − ∑.∈011,2∈01 [1/2 − H5,,.] (10)

which implies that:

'!(() − '!((′′) = ,
#∈%&,(∈)*%

[1/2 − 1+,,.] − ,
#∈%&&,(∈%&

[1/2 − 1+,,.]

Any of the above equations imply that:

1

2
< g

#∈+<,%∈0-+

[1/2 − H*#,%] − g

#∈+<<,%∈+<

[1/2 − H*#,%] <
1

2

This means that (and (′′ have the same corequirement whether
(′" is tight with respect to connectivity requirements given by V,
or is tight with respect to connectivity requirements given by ',
which is a contradiction. This means that (has to own at least
one endpoint.

Lemma 11 Given a basic feasible solution H to OP 3, let ℒ be
the laminar collection of tight sets with properties described in
Theorem 5, and let <(=, >) be the resulting graph whose edges
all have positive weight under H. Suppose that H* < 1/2 for all
A ∈ > and that for all [∈ ℋ, we have that all subsets △"!⊆ =H
(where =H is the vertex set of any branch N(2G, =H , >H)
connected to some trunk vertex 2G ∈ [), has more than 3
outgoing edges, i.e. ç(△"!) ≥ 4. Given the forest ℱ constructed
from the partial ordering of ℒ, the counted number of endpoints
owned by nodes in ℱ exceed 2|>|.

Proof. We borrow notations from (Jain, 2001), which uses the
concept of tokens. Namely, each endpoint of any edge A ∈ >
corresponds to one token. Given an endpoint of edge A, its token
is initially assigned to the set that owns the vertex 2
corresponding to an endpoint of A. Afterwards, the tokens can
be re-assigned to other sets. From the assumptions, each set (∈
ℒ that is not a root in ℱ can be assigned two tokens. However,
roots of trees in ℱ are assigned strictly more than two tokens.
Given that the number of nodes in ℱ is equal to |>|, there should
be only 2|>| tokens corresponding to the total number of
endpoints. However, as mentioned, more than 2|>| tokens are
counted in total.

We show this contradiction using several cases. Similar to the
notations in Theorem 5, let è refer to a collection of sets in ℒ
that are tight with respect to connectivity requirements, and let
0 refer to a collection of sets in ℒ that are tight with respect to
flow constraints, i.e. 0 ⊆ ℋ . Let (be some node in ℱ . We
consider the following cases.

Case 1: (∈ è is a leaf.
Case 2: (∈ 0 is a leaf.
Case 3: (∈ 0 has some children.
Case 4: (∈ è has four or more children.
Case 5: (∈ è has three children.
Case 6: (∈ è has two children.
Case 7: (∈ è has one child.

For case 1, given that all edges A ∈ > have H* < 1/2, there has
to be at least 3 edges in I(() from the fact that connectivity
requirement function V is integral. Since there are at least three
edges with endpoints in (, and (is a leaf, it follows that (can
be assigned exactly 2 tokens with a surplus of at least 1. In case
(has exactly three outgoing edges, this implies hat ≥](() = 1/2.
This fact is useful, since it implies that Lemma 9 can be applied
by the parent of (.

For case 2, if (∈ 0, we have that (corresponds to some △"!⊂
=H, where =H is the vertex set of a branch N(2G, =H , >H) whose

root is a trunk vertex 2G ∈ [for some [∈ ℋ . From the
assumption, (has at least 4 outgoing edges. Therefore, (can
keep 2 tokens to itself and give at least a surplus of 2 tokens to
its parent if it has one.

For case 3, given that (∈ 0, we have that all of (’s children are
not in è - as a result of condition F1 for the connectivity
requirement function V, i.e. if (∈ 0, then all vertices in (have
zero connectivity requirements. This implies that no subset of
vertices of (can be tight with respect to connectivity
requirements given by V. Thus, if (∈ 0, all children of (are
tight with respect to flow constraints, i.e. all of its children
should also belong to 0. In addition, in order for (to have a
child in 0 , it has to be the case that both (and its children
belong to the vertex set =H of some branch N(2G, =H , >H) whose
root is a trunk vertex 2G ∈ [of some [∈ ℋ. The children of (
cannot be connected to a different root given that the set of
branches are disjoint for any [∈ ℋ. It follows that the children
of (are not disjoint.

Moreover, we claim that (should only have one child. Suppose
to the contrary that (more than one child. Without loss of
generality, let (have two children (′ and (′′. It cannot be the
case that (′ ⊆ (′′ or that (′′ ⊆ (′ given that (is the parent of
both (′ and (′′, which implies that it is the minimal set which
contains both (′ and (′′ . We thus have (′′ ⊆ (′ and (′ ⊆ (′′ .
Given that ℒ is laminar, this implies that (′ and (′′ are disjoint.
However, this is impossible given that the children of (are not
disjoint given that they are connected to the same root vertex 2G
as pointed out in the preceding paragraph. Thus, (has only one
child.

Given that (has one child (′ , it cannot be the case that all
outgoing edges of (have endpoints in (′ since this violates the
linear independence of characteristic vectors of sets in ℒ .
Moreover, (has to own at least two endpoints given that H* <
1/2 for all A ∈ >. If (has only one endpoint, then the difference
in R(ç(()) and R(ç((′)) differs by a fraction, contradicting the
fact that both (and (′ are tight with respect to flow constraints
given ', and where ' is an integral function. It follows that (has
4 tokens, two of which come from the surplus of its child (′ ∈
0, and another two from the endpoints it owns. Therefore, (can
keep 2 tokens to itself and give at least a surplus of 2 tokens to
its parent if it has one.

For case 4, if (∈ è has four or more children, then (has at least
4 tokens from the surplus of its children. It follows that (can
keep 2 tokens and give 2 tokens to its parent if it has one.

For case 5, (∈ è has three children. If one child of (has a
surplus of two (i.e. for instance, if the child belongs to 0), or if
(owns an endpoint, then (has four tokens. Otherwise, each
child of (has a corequirement of 1/2 , and it follows that
≥](() = 1/2 as well from Lemma 9. As stated, having ≥](() =
1/2 is useful since it means that Lemma 9 can be applied by (’s
parent as its child (() has a corequirement of 1/2. Moreover, (
has 3 tokens, and it can keep 2 tokens to itself and give 1 token
to its parent if ever it has one.

For case 6, (∈ è has two children. If both children have a
surplus of at least 2 tokens (for instance, if both children belong
to 0), then (has at least 4 tokens. Otherwise, if one child has a
surplus of 1, then from Lemma 10, (has to own at least one
endpoint. If both children have a surplus of 1, then both children
have a corequirement of 1/2. From Lemma 9, this implies that
≥](() = 1/2, and Lemma 9 can be applied again by (’s parent.
In addition, if (owns only one endpoint, it has 3 tokens, 2 from
the surplus of its children and 1 from the endpoint it owns. Thus

Vol. 16 | No. 02 | 2023 SciEnggJ

309

(can keep 2 tokens to itself and give 1 token to its parent if ever
it has one.

For case 7, if (∈ è has only one child (′, then (has to own at
least 2 endpoints. Similar to case 3, it cannot be the case that all
outgoing edges of (have endpoints in (′ since this violates the
linear independence of characteristic vectors of sets in ℒ .
Moreover, if (has only one endpoint, then the difference in
R(I(()) and R(I((′)) differs by a fraction, contradicting the
fact that both (and (′ are tight with respect to integral functions.

We now note that there are |>| nodes in ℱ given that |ℒ| = |>|
as per Theorem 5. By definition, if a node is a leaf, then it has to
have a parent. Let the leaf node be allocated 2 tokens and let it
give all of its surplus to its parent. From the enumerated cases,
there always exists a surplus that can be given by a child to its
parent. If the parent of the leaf node is in turn a child of another
parent node, let it keep 2 tokens to itself and let it give its surplus
to its respective parent. Continuing in this way for any subtree
N ∈ ℱ, we eventually reach the root node of N, which would
collect strictly more than 2 tokens. In case a node is a root with
no children, then cases 1-2 imply that it has strictly more than 2
tokens by default. Given that each root node of ℱ has strictly
more than 2 tokens, whereas each non-root node is allocated 2
tokens, it follows that the total number of tokens collected in ℱ
is greater than 2|>|. However, given that the number of nodes
of ℱ equals |>|, there should only be 2|>| endpoints. This gives
rise to a contradiction, thereby proving the Lemma.

