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ABSTRACT 
 
 

n this paper, we propose a variant of the survivable 
network design problem, where subgraphs are given flow 
constraints, which represent upper bounds on weights of 
outgoing edges with endpoints that belong to vertex 
subsets of these subgraphs. The general problem of 

verifying whether the weights of outgoing edges of any vertex 
subset (i.e. a graph cut) of an arbitrary subgraph meets a certain 
upper bound is a computationally hard problem. However, our 
proposed problem considers special types of subgraphs (termed 
!-subgraphs) which possess a tree structure. In particular, a !-
subgraph consists of a trunk whose vertices are connected by a 
unique path and which are termed as trunk vertices. Each trunk 
vertex is connected to a branch which also has a tree structure. 
This special graph structure of ! -subgraphs - along with 
conditions over the flow constraint function and additional 

constraints on the optimization problem allow for the 
construction of a polynomial-time algorithm to solve our 
proposed problem - using efficient separation oracles under the 
ellipsoid method of linear programming.  Our proposed 
algorithm provides (2$%, 2'(() + 3) -performance where $  is 
the maximum length of any path that connects the root and 
leaves of a branch of any !-subgraph, % is the maximum number 
of leaves of any branch of a !-subgraph, and ( is a vertex subset 
of a branch of a !-subgraph.  
 
 
1. INTRODUCTION 
 
The standard form of the survivable network design problem 
considers the problem of assigning an optimal weight to each 
edge of an input graph, such that the total cost of edges is 
minimized - subject to the constraint that certain connectivity 
requirements are met for each vertex pair, (Williamson et al., 
1995). By connectivity requirements, we refer to lower bounds 
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on the number of edge-disjoint paths connecting each pair of 
vertices in the input graph. This problem has several practical 
applications - particularly in the area of distributed computing 
with fault tolerance, (Guo et al., 2013), (Son et al., 2022). In 
several of these applications, vertices of the graph represent 
individual computers, while edges represent network 
connections. In order to ensure fault tolerance, a certain number 
of redundant connections have to be imposed for each pair of 
computers in the distributed network - which translate to 
connectivity requirements in the survivable network design 
problem. 
 
The standard survivable network design problem is an ,--hard 
problem, (Vazirani, 2013), (Williamson et al., 1995), which 
implies that unless - = ,-, polynomial algorithms to arrive at 
the optimal solution of the problem would be non-existent. 
Under this context, solving for approximate solutions of the 
survivable network design problem in polynomial-time would 
instead make more sense and be more feasible. This leads to the 
area of approximation algorithms, for which some well known 
,--hard problems such as knapsack problem, the subset-sum 
problem, or the traveling salesman problem have been provided, 
(Ibarra and Kim, 1975), (Mömke and Svensson, 2011), (Batra et 
al., 2014). 
 
In the case of the standard survivable network design problem, 
an early approximation algorithm is provided by (Williamson et 
al., 1995), which is a 2/ -approximation algorithm, where / 
represents the largest edge-connectivity requirement given any 
pair of vertices. The same authors improved this bound further 
to 20!  using a primal-dual approach, where 0!  is the / th 
harmonic number. A notable approximation algorithm for this 
problem however is provided in (Jain, 2001), which uses 
iterative rounding. Namely, the original survivable design 
problem is first transformed into a relaxed form, i.e. real 
solutions are allowed instead of integral solutions. Under this 
relaxed form, standard linear programming procedures would be 
able to compute for the (non-integral) optimal solution in 
polynomial-time. Afterwards, a key result in (Jain, 2001) is the 
fact that any basic feasible solution to the relaxed problem 
returned by linear programming results in at least one edge with 
weight of at least a half. The algorithm of (Jain, 2001) then 
includes such sufficiently weighted edges in a solution set of 
edges. Subsequently, these edges are removed in the graph 
resulting in a residual graph. The algorithm iteratively re-
computes for an optimal solution under the residual graphs, then 
removes all sufficiently weighted edges until no candidate edges 
remain. This results in a 2-approximation guarantee, i.e. the 
solution returned by the algorithm is within a factor of 2 from 
the optimal solution. However, for Jain’s algorithm to work in 
polynomial-time, the algorithm uses the ellipsoid method (Bland 
et al., 1981) to efficiently solve the linear program under an 
exponential number of constraints. The ellipsoid method 
requires a polynomial-time separation oracle, which tells the 
linear program if some constraint has been violated by a 
candidate solution, (Jain, 2001), (Vazirani, 2013). 
 
Since the formulation of the standard form of the survivable 
network design problem, several other variants of the problem 
have been proposed. For instance, (Chekuri et al., 2012) 
incorporates prize-collecting features to the problem. Another 
variant of the survivable network design problem is proposed by 
(Lau and Singh, 2013) which incorporates constraints on vertex 
degrees, giving a (2,21" + 3)  bi-criteria approximation 
algorithm using iterative rounding with relaxation, where 21" +
3 implies that under the approximation algorithm violates the 
degree bound 1" of vertex 2 by 21" + 3. 
 
 
 

1.1 Our Contributions  
 
In this paper, we propose a variant of the survivable network 
design problem, whereby in addition to connectivity 
requirements, certain constraints on the outgoing flows of 
subgraphs are included. It should be noted that given an arbitrary 
set of weights for edges of an arbitrary subgraph, the general 
problem of verifying whether the weights of outgoing edges of 
each vertex subset of the subgraph complies with a provided 
constant upper bound is a computationally hard problem. This is 
because this problem is basically an instance of the MAX-CUT 
problem, which looks for the maximal cut in a graph. MAX-
CUT is shown NP-complete (Ausiello, 2012). To see this fact, 
suppose that a solution to the MAX-CUT problem is discovered, 
in the form of a set of vertices whose outgoing edges have 
weights that are maximal. This implies that all other vertex 
subsets for a subgraph have outgoing edges whose weights are 
less than the weights provided by the solution. If the solution is 
less than or equal to the provided upper bound, then all other 
subsets likewise comply with the constant upper bound. On the 
other hand, if the solution to the MAX-CUT problem violates 
the upper bound, then there is at least one vertex subset that does 
not comply with the constant upper bound. Due to this 
computational difficulty, this paper narrows the type of 
subgraphs considered to certain subgraphs (termed ! -
subgraphs)which follow a tree structure. In particular, a ! -
subgraph consists of a trunk and a set of branches. The trunk of 
a !-subgraph is itself a subgraph made up of trunk vertices that 
are connected by a unique path, such that all edges of the trunk 
have to belong to this path. Each trunk vertex represents the root 
of a branch. A branch of a !-subgraph is a subgraph in the form 
of a tree (i.e. a graph with no cycles) whose root is a trunk vertex. 
The collection of !-subgraphs is termed ℋ, and in order for ℋ 
to be considered as a valid input to the problem (i.e. an 
admissible input), vertex sets of !-subgraphs have to be disjoint. 
Moreover, for each !-subgraph of ℋ, vertex sets of its branches 
have to be likewise disjoint. Given ℋ, our proposed variant of 
the survivable network design problem provides upper bounds 
on the weights of outgoing edges of subsets of branches of each 
!-subgraph. However, the upper bounds have to have special 
properties such as being constant for all subsets of each branch 
of the !-subgraph, and of being defined only for subsets that 
contain the trunk vertex. Moreover, we impose additional 
constraints on the resulting optimization problem (OP 3) such as 
requiring that edges that are “closer” to the trunk vertex have 
greater weight than edges that are “farther” from the trunk vertex. 
Several other constraints and conditions are incorporated into 
our proposed problem which are described in detail in this paper.  
 
Under these constraints, we propose a polynomial-time 
algorithm which use polynomial-time separation oracles. These 
separation oracles efficiently indicate any violation of the 
constraints of OP 3, which would form a part of the ellipsoid 
method needed for efficiently solving the linear program. Our 
proposed algorithm is a (2$%, 2'(() + 3) -approximation 
algorithm, where $  is the maximum length of any path that 
connects the root and leaves of any branch of any !-subgraph, 
while % is the maximum number of leaves of any branch of any 
!-subgraph, and ( is a subset of a branch of a !-subgraph that is 
subjected to flow constraints. Our algorithm uses a variant of the 
iterative rounding with relaxation algorithm shown in (Lau and 
Singh, 2013). We provide detailed technical proofs in the 
Appendix to prove the approximation guarantees of our 
proposed algorithm which uses the concept of laminar sets and 
properties of submodular / weakly-supermodular functions.  
 
2. Preliminaries 
 
For any / ∈ ℕ , let [/]  denote {1,2, . . , /} . Let <(=, >)  be a 
graph with set of vertices = and set of edges >. A vertex 2 ∈ = 
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is denoted in lowercase, while an edge connecting a pair of 
vertices ?, @ ∈ = is denoted by A#,% , and the vertices ?, @ are the 
endpoints of A#,%. In some cases, we also denote an arbitrary edge 
in > simply as A, with no endpoints specified. Throughout the 
paper, we assume that all graphs < are undirected. This implies 
that ∀?, @ ∈ =, we have A#,% = A%,#. We now state the following 
definitions which will be used throughout the paper. 
 
Definition 1  Given graph <(=, >), a walk from vertex ? ∈ = to 
another vertex @ ∈ =  is a finite sequence of edges 
((?&, @&), (?', @'), . . . , (?(, @()) for some C > 0 such that ?& = ?, 
@( = @ , and @! = ?!)&  for some / ∈ {1,2, . . . C − 1}. Given a 
walk ((?&, @&), (?', @'), . . . , (?(, @()), the nodes {?&, ?', . . . , ?(, @(} 
comprise the vertex sequence of the walk. A path from vertex ? 
to vertex @ is a walk in which all elements of its vertex sequence 
are distinct, and the first and last vertices of the sequence are ? 
and @ respectively. The vertex ? is the start of the path, while 
vertex @ is the end of the path. A path is said to pass through a 
set of vertices, if the set of vertices correspond to a subset of 
vertices of the path’s vertex sequence. If there exists a path from 
? to @, then vertices ? and @ are connected. Two paths from ? to @ 
are edge-disjoint if their edges do not share common endpoints 
aside from the start and end vertices, i.e. no common endpoints 
except for {?, @}.  
 
Definition 2  Given graph <(=, >), let ( ⊆ = denote a subset of 
vertices with weight H*  associated to each edge A ∈ > . We 
define I(() as corresponding to the set of edges {A#,% ∈ >} such 
that ? ∈ ( and @ ∈ = − (. In other words, I(() denotes the set of 
edges with one endpoint in ( and another endpoint in = − (. Let 
H be a set of weights, where each edge A ∈ > is given a weight 
H* . Given (, (′ ⊆ = , the flow of (  to (′  refers to the sum of 
weights of edges with one endpoint in ( and another endpoint in 
(′.  
 
Definition 3  Given graph <(=, >), let ( ⊆ = denote a subset of 
vertices. The subgraph <+((, >′) induced by ( is defined as the 
graph whose set of vertices is (, and whose set of edges >′ is 
such that for each A#,% ∈ >′, we have A#,% ∈ >, ? ∈ (, and @ ∈ (.  
 
Definition 4  Given graph <(=, >), let 2 ∈ = be any vertex, and 
let ( ⊆ = be a subset of vertices. The set ( is connected to 2 if 
2 ∈ ( , and for each ? ∈ (  such that ? ≠ 2 , we have that ?  is 
connected to 2  in the subgraph <+((, >′)  induced by ( . 
Similarly, given a set L ⊆ = and let ( ⊆ = be subsets of vertices. 
The set ( is connected to L if L ⊆ (, and for each ? ∈ ( such 
that ? ∈ L, we have that ? is connected to each of the vertices of 
(.  
 
Definition 5   Given graph <(=, >), let 2 ∈ =. If a certain subset 
of =  is given the notation △"⊆ = , this means that △"  is 
connected to 2 . Similarly, given a set ( ⊆ = , the subset △+ 
denotes a set of vertices that are connected to the set of vertices 
(.  
 
Definition 6   A tree N(=, >) is an undirected graph in which for 
each ?, @ ∈ =, vertices ? and @ are connected by exactly one path. 
An undirected rooted tree N(O, =, >)  is a tree in which one 
special vertex O ∈ = is designated as a root. Given a root O, let 
((2,, 2&), (2&, 2'), . . . , (2! , O)) be any path from some 2, ∈ = to 
O. This path defines a linear order 2, ≺ 2& ≺ 2'. . . . ≺ 2! ≺ O, 
in which 2% is the parent of 2%-&, and 2%-& is the child of 2% for 
@ ∈ {1,2, . . , / + 1} with 2!)& = O. Given any parent vertex 2% 
for some @ > 0  that corresponds to the endpoint of an edge 
belonging to some path towards O, the set Q denotes the set of 
all child vertices of 2%, which is the union of all the children of 
2% given all possible paths towards O that passes through 2%. A 

vertex 2. ∈ = is a leaf if for any path that passes through 2. and 
ends at the root O, it is the case that 2. has a parent (if 2. is not 
itself the root), but has no child.  
 
2.1 Connectivity Requirement Functions 
 
The definitions below describe connectivity requirement 
functions introduced in the standard survivable network design 
problem. A connectivity requirement function provides a lower 
bound on the number of edge-disjoint paths between a pair of 
vertices of graph. 
 
Definition 7  Given graph <(=, >), an edge cost function is a 
non-negative function R: > → ℚ)  that provides a cost R*  for 
each edge in A ∈ > . The connectivity requirement O#,%  for 
vertices ?, @ ∈ = is a number that represents a lower bound on 
the number of edge-disjoint paths from ? to @. The connectivity 
requirement function V, is a function that assigns a lower bound 
requirement on the number of edges of I(() for each ( ⊆ =. In 
particular for each ( ⊆ = , V(()  is defined as: V(() =
CWH#∈+,%∈+O#,%.  
 
2.2 Submodular and Weakly Supermodular Functions 
 
These definitions describe properties of weakly supermodular 
functions, which are used in (Jain, 2001) to provide a 2 -
approximation algorithm for the standard survivable network 
design problem. In particular, it will be shown later in the paper 
how weakly supermodular functions facilitate the construction 
of a laminar collection of vertex sets – which would prove to be 
crucial in the proof for Theorem 1 below. These definitions 
follow (Williamson and Shmoys, 2011) and (Vazirani, 2013). 
 
Definition 8   Given graph <(=, >), a function X: 20 → ℤ) is 
submodular if X(=) = 0, and for every two sets Z, [ ⊆ =, the 
following two conditions hold:   
    1.  X(Z) + X([) ≥ X(Z ∩ [) + X(Z ∪ [)  
    2.  X(Z) + X([) ≥ X(Z − [) + X([ − Z)  
 
Definition 9   Given graph <(=, >), a function X: 20 → ℤ) is 
weakly supermodular if X(=) = 0 , and at least one of the 
following conditions hold:   
    1.  X(Z) + X([) ≤ X(Z ∩ [) + X(Z ∪ [)  
    2.  X(Z) + X([) ≤ X(Z − [) + X([ − Z)  
 
In particular, it can be shown that the function I  shown in 
Definition 2 is submodular, while the connectivity requirement 
function V shown in Definition 7 is weakly supermodular. To 
see this fact for I, following (Vazirani, 2013), we consider the 
following graph whereby sets Z  and [  have a non-empty 
intersection (if Z  and [  do not intersect then I  is trivially 
submodular). 
 

 
Here, edges with an endpoint in Z ∩ [ and another in Z ∪ [`̀ `̀ `̀ ` are 
counted in both I(Z) and I([) but not in I(Z − [) or in I([ −
Z). In addition, edges with an endpoint in Z − [ and another in 
[ − Z are counted in both I(Z) and I([) but not in I(Z ∩ [) 
or I(Z ∪ [).  v On the other hand, the connectivity requirement 
function V is weakly supermodular. The proof for the weakly 
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supermodular properties of V are shown in Section 6.1 of the 
Appendix. 
 
2.3 Laminar and Crossing Sets 
 
The algorithm of (Jain, 2001) used a laminar collection sets for 
proving the existence of an edge with weight at least 1/2 at each 
iteration of the iterative rounding algorithm. The definition of a 
laminar collection of sets below follow the presentation in 
(Williamson and Shmoys, 2011) and (Vazirani, 2013).  
 
Definition 10   Given graph <(=, >), two sets Z ⊆ = and [ ⊆
= are said to cross if each of the sets Z − [, [ − Z and Z ∩ [ 
is nonempty. A collection ℒ of subsets of = is laminar if no pair 
of sets Z, [ ∈ ℒ  cross. This implies that if Z, [ ∈ ℒ , and ℒ  is 
laminar, then either Z and [ are disjoint, or one is contained in 
another. 
 
As an illustration for the definition of laminarity, let Z, [, Q, c, > 
be sets such that Z ∩ [ is nonempty. In the figure below, the 
collection of sets Z and [ cross and is therefore not laminar. On 
the other hand, the collection of sets Q,c  and >  are laminar 
given that no two sets cross. 
 

 
 
If a collection of sets is laminar, certain nice properties would 
result. In particular, under a laminar collection of sets, proofs 
involving counting arguments could be easily applied. An 
illustration of a counting argument involving a laminar 
collection of sets is shown in Section 6.2 of the Appendix which 
shows that there has to be an edge with weight at least 1/2 in 
order to avoid a contradiction whereby the number of edges 
counted would exceed the number of edges in the solution. In 
addition, Lemma 11 of Section 6.3 of the Appendix applies a 
similar counting argument over a laminar collection of sets in 
order to prove the main Theorem of this paper which is Theorem 
3 below. 
 
3. Standard Survivable Network Design 
 
We now describe the standard survivable network design 
problem as shown in (Jain, 2001). To avoid repetition, this paper 
assumes that all input graphs <(=, >) from this point onwards 
have costs R* associated to each edge A ∈ >. 
 
3.1 Problem Description 
 
Given an input graph <(=, >) with costs R* associated to each 
edge A ∈ >, the standard survivable network design problem is 
as follows (OP 1). 
 

ming

*∈1

R*H* 

 subject	to 
 ∀( ⊆ =:∑*∈2(+) H* ≥ V(() 
 ∀A ∈ >: H* ∈ {0,1} 
 
A relaxation of OP 1 which allows for non-integer solutions 
could be solved in polynomial-time using standard linear 

programming algorithms. This relaxation of OP 1 is now shown 
as OP 2 which is as follows. 
 
 min∑*∈1 R*H* 
 subject	to 
 ∀( ⊆ =:∑*∈2(+) H* ≥ V(() 
 ∀A ∈ >: H* ≥ 0 
 
A possible source of exponential time consumption in solving 
OP 2 is the constraint ∀( ⊆ =:∑*∈2(+) H* ≥ V(()  since it 
requires checking constraint compliance for each subset ( ⊆ =. 
However, as mentioned, this hurdle could be solved using the 
ellipsoid method, (Williamson and Shmoys, 2011), (Vazirani, 
2013). 
 
3.2 Existing Approximation Algorithm 
 
Following (Williamson and Shmoys, 2011), an r -
approximation algorithm for an optimization problem is an 
efficient (i.e. polynomial-time relative to the size of the input) 
algorithm that for all instances of the problem produces a 
solution whose value is within a factor of r from the value of an 
optimal solution. For the Theorems and Definitions below, we 
make an assumption over the edges of the input graph after 
solving for a feasible solution to OP 2. Namely, we assume that 
all edges in the input graph <′ to OP 2 with zero weight under 
some solution H are removed. This results in a residual graph 
where we have H* > 0 for each A ∈ >. With this assumption, we 
define the following. 
 
Definition 11   Given an optimization problem with C linear 
inequalities, a feasible solution is a solution instance for the 
problem where no constraint is violated. A solution is a basic 
feasible solution if it satisfies C  linearly independent 
inequalities with equality. A basic feasible solution cannot be 
written as the convex combination of two other feasible solutions.  
 
Definition 12   Given input graph <(=, >) to OP 2, let H be a 
feasible solution, where H:= {H*}*∈1. A set ( ⊆ = is tight with 
respect to connectivity requirements given by V if ∑*∈2(+) H* =
V(().  
 
Definition 13   Given input graph <(=, >) to OP 2, let H be a 
feasible solution, where H:= {H*}*∈1. The characteristic vector 
s+  corresponding to ( ⊆ = is a vector in {0,1}|1|  where each 
coordinate of s+ is mapped to a particular edge A ∈ >. If given 
A ∈ >  we have A ∈ I(() , the value of the coordinate 
corresponding to A in s+ is 1. Otherwise, it is 0.  
 
With the above Definitions, we now state the 2-approximation 
algorithm from (Jain, 2001) as follows. 
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Algorithm 1: Iterative Rounding for Standard Survivable Network Design

The proof that Algorithm 1 is a 2-approximation algorithm relies 
on the main Theorem in (Jain, 2001), which is stated as Theorem 
1 below.  

Theorem 1  (Jain, 2001): For any weakly supermodular 
function t, any basic feasible solution u to OP 2 has an element 
whose value is at least v/w, i.e. u6 ≥ v/w for at least one edge 
x ∈ y.  

In order to establish Theorem 1, (Jain, 2001) first established 
results stated in Theorem 2 (below) which states the important 
fact that if t is weakly supermodular, then in a basic feasible 
solution u to the standard survivable network design problem of 
OP 2, there is a laminar collection z of tight sets. As mentioned 
before, if a collection of sets is laminar, proofs involving 
counting arguments could be applied as described in Section 6.2 
of the Appendix which establishes the existence of at least one 
edge with weight v/w as stated in Theorem 1. 

Theorem 2  (Jain, 2001): Given input graph {(|, y) to OP 2, 
let t  be a weakly supermodular function t  for connectivity 
requirements, and let u be any basic feasible solution. Given u, 
there is a collection z  of subsets of vertices of |  with the 
following properties:   

1. for all } ∈ z, } is tight.  

2. the characteristic vectors ~7  for all } ∈ z  are 
linearly independent.  

3. |z| = |y|, where y is the set of edges of the new 
graph {′(|, y) , where all edges x  in the original 
input graph with u6 = Ä are removed.  

4. z is laminar. 

The condition that V is weakly supermodular and the fact that I 
is submodular is important to establish laminarity of ℒ  in 
Theorem 2 above. From (Jain, 2001) the laminar collection ℒ is 
constructed from an initial non-laminar collection of sets using 
an iterative uncrossing process. Namely, any pair of crossing 
sets could be effectively replaced by a pair of sets that are 
laminar. For instance, suppose that Z and [ are two sets in ℒ 
that cross. Following Lemma 23.14 of (Vazirani, 2013), we have 
that one of the following must hold: (1) Z − [ and [ − Z are 
both tight and s8 + s9 = s9-8 + s8-9  or (2): Z ∪ [ and Z ∩
[  are both tight and s8 + s9 = s8∪9 + s8∩9  given that V  is 
weakly supermodular. This implies that given crossing sets Z 
and [, we can keep the optimal solution by uncrossing Z and [ 
and replacing them with the laminar pair of sets Z − [ and [ −
Z if (1) holds. On the other hand, if (2) holds, then Z and [ can 
be replaced by the laminar pair of sets Z ∪ [ andZ ∩ [. To see 
that either (1) or (2) holds, following (Vazirani, 2013), we use 

the weakly supermodular property of V, whereby we either have: 
V(Z) + V([) ≤ V(Z − [) + V([ − Z)  or V(Z) + V([) ≤
V(Z ∪ [) + V(Z ∩ [). If the former holds, given that Z and [ 
are both tight sets under the basic feasible solution H, we have 
∑ H**∈2(8) +∑ H**∈2(8) = V(Z) + V([). Moreover, given that 
H  is feasible, we have ∑ H**∈2(8-9) +∑ H**∈2(9-8) ≥ V(Z −

[) + V([ − Z). Given that V(Z) + V([) ≤ V(Z − [) + V([ −
Z) , this leads to ∑ H**∈2(8) +∑ H**∈2(8) ≤ ∑ H**∈2(8-9) +

∑ H**∈2(9-8) . But from the submodularity of I, the left hand 
side of the prior equation is at least greater than the right hand 
side given that I(Z ) and I([)  also count edges with one 
endpoint in Z ∪ [`̀ `̀ `̀ ` and another in Z ∩ [. Hence, we should have 
∑ H**∈2(8) +∑ H**∈2(8) = ∑ H**∈2(8-9) +∑ H**∈2(9-8) . 
However, this equality could only be met if edges with one 
endpoint in Z ∪ [`̀ `̀ `̀ ` and another in Z ∩ [ is given zero weight in 
H . Hence, s8 + s9 = s9-8 + s8-9  under the condition that 
V(Z) + V([) ≤ V(Z − [) + V([ − Z). A similar result applies 
if V(Z) + V([) ≤ V(Z ∪ [) + V(Z ∩ [) holds instead. 
 
Aside from the weakly supermodular property of V  and the 
submodular property of I, construction of a laminar collection 
of sets such that |ℒ| = |>| also requires the first two properties 
of tightness and linear independence. More details are explained 
in Section 6.2 of the Appendix. For the problem considered in 
this paper which incorporates the standard survivable network 
design problem, an analogous result regarding the uncrossing 
process of tight sets to form a laminar collection is described in 
Lemmas 4-8 of Section 6.3 of the Appendix. 
 
4. Survivable Network Design with Constrained Å-subgraph 
Flows 
 
In this section, we now describe our proposed variant of the 
survivable network design problem such that outgoing flows in 
! -subgraphs are constrained. We first describe a list of 
conditions for an input graph with its set of !-subgraphs to be 
considered as a valid input to our proposed problem. We also 
indicate conditions for the validity of the connectivity 
requirement function V  and the flow constraint function ' . 
Finally, we state our proposed problem in terms of an 
optimization problem OP 3. 
 
To explain the motivation behind our proposed problem, recall 
that flow constraint functions provides bounds on the weight of 
edges in graph cuts. For instance, the maximum flow problem is 
equivalent to the minimum cut problem, which could be 
efficiently solved using the Ford-Fulkerson algorithm 
(Williamson and Shmoys, 2011). In this paper, we consider the 
converse problem of providing upper bounds on the weight of 
edges in graph cuts, whereby the upper bound is provided by the 
function '. For instance, in the figure below, if '(() = 1, then 
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the sum of weights for edges W, 1 and R has to be less than 1, 
where W, 1, and R are the outgoing edges of vertex set (. 
 

e, 
 

In a general subgraph however with set of vertices = , if the 
function ' is defined for each subset ( ⊆ =, then the process of 
checking if each possible subset of vertices ( ⊆ = complies with 
' could not be done in polynomial time given that the number of 
subsets of vertices of = is exponential. A possible workaround 
for this could be to check for the subset (  that provides the 
maximum cut under a constrained constant '. If such a subset ( 
is found to comply with a constant ' in the sense that the weights 
of its outgoing edges is less than '((), where '(() is constant 
for all (	 ⊆ =, then all other subsets of = would likewise comply 
with '. However, this could not be done in polynomial time 
given that the maximum cut problem is NP-complete (Ausiello 
et al., 2012). 
 
Given the above difficulties, the problem in this paper does not 
opt to consider general subgraphs with a general flow constraint 
function ' defined for all subsets of vertices of the subgraph. 
Instead, specific instances of subgraphs termed !-subgraphs are 
considered along with a special type of flow constraint function 
'  that is defined only for certain subsets of the !-subgraph. 
Briefly, a !-subgraph can be described as having a tree structure 
(conditions [G1]-[G4]) below, with branches that are described 
in the following figure, where the vertices of the branch are 
small green circles along with one small blue circle which is 
termed a “trunk vertex”. 
 

 
Likewise, the flow constraint function is defined only for 
specific subsets of the !-subgraph, such as the subsets of vertices 
that are encircled in the figure above. In addition, ' is required 
to be constant for all subsets of vertices in a branch for which it 
is defined. These are described in conditions [Z1]-[Z3] 
pertaining to ' below. Added to this, the optimization problem 
(OP 3) is constructed in such a way that given a branch in a !-
subgraph, it has to be the case that edges closer to a special 
vertex termed the “trunk vertex” have to have higher weight than 

the sum of edges below it. For instance, consider the branch 
illustrated in the following figure. Here, suppose that the weights 
of 1 and R are both 0.5 each. Under the constraints of OP 3, a 
feasible solution has to set the weight of W as less than or equal 
to 0.5 and the sum of weights of É and A as less than or equal to 
0.5. 

 

Given conditions [G1]-[G4] pertaining to ! -subgraphs and 
conditions [Z1]-[Z3] pertaining to the flow constraint function 
', along with the constraints of OP 3, it could now be easily 
checked in polynomial time if each subset of vertices of a branch 
of the !-subgraph complies with the flow constraint function ' 
by simply checking the weight of edges connected to trunk 
vertices. For instance, in the figure above, given that edges 1 and 
R have larger weight than the sum of edges below it, if the sum 
of both 1 and R is less than or equal to the constraint dictated by 
', then all possible subsets of vertices in the branch also comply 
with ' given that ' is constant for all subsets of vertices in the 
branch. This is the intuition behind the separation oracle for the 
second constraint of OP 3 which is described below. 
 
4.1 Additional Definitions 
 
Definition 14  Given input graph <(=, >), let H be a set of edge 
weights, i.e. H:= {H*}*∈1 . A flow constraint function ': 20 ×
20 → ℕ, applies the following upper bound to each (, (′ ⊆ =: 
 
∑*∈1 H* ≤ '((, (<)  

where A has one endpoint in	( and another in (′    (1) 
 
In some cases, the flow constraint function ' is designed such 
that for some ( ⊂ =, only a subset of edges x ⊆ I(() with one 
endpoint in ( and another endpoint in some pre-defined (′ ⊆ = 
have finite upper bounds. All other edges A ∈ I(() ∧ A ∈ x have 
infinite upper bounds. Under this context, the flow constraint 
function for ( is simplified to ': 20 → ℕ, and is denoted as '(() 
for ease of notation as the corresponding (′ is already given and 
understood for each ( ⊆ = . For this paper, we adopt this 
convention in defining '  for all ( ⊆ =  as we will specify 
beforehand the specific edges in I(() that would have finite 
upper bounds under '. 
 
Definition 15  Given input graph <(=, >), let ( ⊆ = be a subset 
of vertices. The flow constraint function ' is uniform over ( if 
for each pair of subsets (′ ⊆ ( and (′′ ⊆ (, we have '((′) =
'((′′).  
  
Definition 16   Given input graph <(=, >), let H be a set of edge 
weights. A set ( ⊆ = is tight with respect to flow constraints 
given by ' if ∑*∈2(+) H* = '(() where A has one endpoint in ( 
and another endpoint in some pre-defined (′. 
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4.2 Problem Components 
 
This subsection provides definitions that describe properties of 
!-subgraphs by means of conditions. An illustration of a !-
subgraph is shown in Fig. 1. Conditions for flow constraint 
functions and connectivity requirement functions to be valid or 
admissible are also stated.  
 

 
Figure 0: Figure illustrating a !-subgraph inside an input graph 

to the survivable network design problem. The trunk of the 

subgraph has trunk vertices (blue circles) that are connected by 

a unique path (edges of the trunk’s unique path are marked as 

red lines). The trunk vertices serve as roots of branches whose 

sets of vertices (green circles) are disjoint. All other vertices that 

do not belong to the !-subgraph are gray circles. 

Definition 17  Given a graph {(|, y), a subgraph of { can be 
considered as a Å-subgraph if it meets conditions G1-G4 defined 
below. The collection of sets of vertices of all Å-subgraphs in { 
is á. 

1. condition [G1]: ∀à,à′ ∈ á, we have à∩à′ = ∅, i.e. 
á is a disjoint collection of subsets of |.  

2. condition [G2]: ∀[ ∈ ℋ, the subgraph <9([, >′) 
induced by [ is composed of the following:   

(a) A trunk consisting of a set of trunk vertices 
{ä=

> , ä?
> , . . , ä@

> } ⊂ à  for some ã > Ä  and trunk 
edges ((ä=> , ä?> ), (ä?> , äA> ), . . . , (ä@-?> , ä@

> )) ⊂ y′  that 
define a unique path connecting each pair of trunk 
vertices. The notation ä>  refers to some arbitrary 
trunk vertex of à.  

(b) Given ã  trunk vertices in à , {B(à, y′)  also 
contains a set of disjoint branches consisting of 
rooted trees {å(äC>, |D, yD)}C∈[@]  in which the root 
äC
> ∈ |D of each branch is a trunk vertex.  

3. condition [G3]: ∀[ ∈ ℋ, ∀2G ∈ [, there is no edge in > 
connecting any trunk vertex 2G to = − [. 

 
4. condition[G4]: ∀[ ∈ ℋ, ∀N(2G, =H , >H), there is no edge 

connecting any ? ∈ =H  with ? ≠ 2G  to any other trunk 
vertex 2G< ∈ [ such that 2G< ≠ 2G.  

 
Definition 18  A pair consisting of a graph <(=, >)  and a 
collection ℋ of subsets of = is admissible if each set of vertices 
in ℋ complies with conditions G1-G4. It follows that the set of 
subgraphs induced by the sets of vertices of ℋ is the set of !-
subgraphs of <.  
 
Definition 19  Given an admissible graph <(=, >)  with 
admissible collection ℋ of subsets of =, for some [ ∈ ℋ, let 
N(2G, =H , >H) be a branch whose root is some trunk vertex 2G ∈
[. Let △"!⊆ =H be any subset of =H that is connected to =. We 
define the set ç(△"!) as corresponding to the set of edges with 
one endpoint in △"! and another endpoint in either = − [, or in 

=H −△"!, i.e. this set is equivalent to the set of edges in I(△"!) 
less the trunk edges for which 2G represents an endpoint.  
 
Definition 20  Given an admissible graph <(=, >)  with 
admissible collection ℋ of subsets of =, the collection ℋ is $-
admissible if for any branch N(2G, =H , >H) with root 2G ∈ [ for 
any [ ∈ ℋ, the maximum length of any path in >H from 2G to a 
leaf vertex in =H is at most $.  
 
Definition 21  Given an admissible graph <(=, >)  with 
admissible collection ℋ of subsets of =, the collection ℋ is %-
admissible if for any branch N(2G, =H , >H) with root 2G ∈ [ for 
any [ ∈ ℋ , the maximum number of leaves in the tree 
N(2G, =H , >H) is at most %.  
 
Definition 22  Given an admissible graph <(=, >)  with 
admissible collection ℋ of subsets of =, the collection ℋ is $%-
admissible if ℋ is both $-admissible and %-admissible.  
 
Definition 23  Given an admissible graph <(=, >)  with an 
admissible collection ℋ of subsets of =, let H be a set of edge 
weights. A flow constraint function ': 20 → ℕ is admissible if it 
meets the following conditions.   
 

1. condition [Z1]: ∀[ ∈ ℋ , ∀2G ∈ [  given the branch 
N(2G, =H , >H), ' is uniform over all subsets △"!⊆ =H that 
are connected to 2G. 
 

2. condition [Z2]: ∀[ ∈ ℋ , ∀2G ∈ [ , given the branch 
N(2G, =H , >H) and a subset △"!⊆ =H  connected to 2G , we 
have:  

 
 

∑#∈△"! ,%∈0-9 H*#,% + ∑#∈△"! ,%∈0&-△"! H*#,% ≤ '(△"!)   (2) 
 

In this case, the pre-defined set (′ that is associated with △"! 
for which '(△"!) provides finite upper bounds for all edges 
with one endpoint in △"! and another endpoint in (′ is (′:=
(= − [) ∪ (=H − 2

G). Thus, the above equation could be 
simplified to:  
 

∑*∈J(△"!) H* ≤ '(△"!)                           (3) 
 

3. condition [Z3]: For all other subsets ( ⊆ = that are not 
subsets △"!⊆ =H connected to the root 2G of some branch 
N(2#

G, =H , >H) ⊂ <9([, >′)  of some [ ∈ ℋ , we have 
'(() = ∞, i.e. no flow constraint is imposed.  

From the definition of ' above, for any vertex subset △"!⊆ =H, 
for any branch N(2G, =H , >H) with root 2G ∈ [ with [ ∈ ℋ, we 
have under condition è2  that '  actually provides an upper 
bound on ç(△"!). This is due to conditions G3-G4 of ℋ. 

Definition 24  Given an admissible graph <(=, >)  with an 
admissible collection ℋ of subsets of =, let H be a set of edge 
weights. A connectivity requirement function V: 20 → ℕ  is 
admissible if it meets the following conditions:   

1. condition [F1]: ∀[ ∈ ℋ,∀? ∈ [, ∀@ ∈ = − {?}: O#,% = 0 , 
i.e. there are zero connectivity requirements between any 
vertex in [ to any other vertex. 
  

2. condition [F2]: V is weakly supermodular.  
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4.3 Optimization Problem 3 

The survivable network design with constrained ! -subgraph 
flows problem requires an admissible input graph <(=, >), a $%-
admissible collection ℋ  of subsets of = , an admissible 
connectivity requirement function V  and admissible flow 
constraint function '. Given these inputs, the problem is termed 
optimization problem 3 (OP 3) and includes an additional 
constraint (constraint C2), whereby for each branch 
N(2G, =H , >H) with root 2G ∈ [  for some [ ∈ ℋ , the problem 
requires that for any vertex in 2 ∈ =H , the sum of weights of 
edges from 2 to its children should be less than or equal to the 
weights of the edge connecting 2 to its own parent. In this case, 
a vertex ? is a child of 2 if there is a path from ? to the root 2G 
whose first edge is A#,". Given this constraint, OP 3 is described 
as follows. 
 
Survivable network design problem with constrained Å -
subgraph flows (relaxed form)  
 
Input:   

1. Admissible input graph <(=, >)  with a $% -admissible 
collection of sets of vertices ℋ  

2. Admissible flow constraint function '  
3. Admissible connectivity requirement function V 

Solve for u: 

ming

*∈1

R*H* 

subject to: 
∀( ⊆ =: 

			 "
!∈#(%)

#! ≥ %(') 

∀[ ∈ ℋ,∀2G ∈ [	given	the	branch	N(2G, =H , >H)	 
we	have	the	following	for	all 

△"!⊆ =H	that	are	connected	to	2
G: 

g

#∈△"! ,%∈0-9

H*#,% + g

#∈△"! ,%∈0&-△"!

H*#,% ≤ '(△"!) 

∀[ ∈ ℋ,∀2G ∈ [, given	the	branch	N(2G, =H , >H), 
let	2L ∈ =H 

							be	any	parent	vertex	with	set	of	child	vertices	 
Q ⊂ =H , and	let 

								2M ∈ =H	be	the	parent	vertex	of	2L.We	have: 

g

#∈N

A#,"' ≤ H*"',"(  

∀A ∈ >: H* ≥ 0 
 
It could be seen that the survivable network design with 
constrained !-subgraph flows problem is at least as hard as the 
standard survivable network design problem. Any instance of 
the standard survivable network design problem could be 
reduced to an instance of the survivable network design with 
constrained !-subgraph flows problem by setting the input ℋ as 
empty. Afterwards, '(() is set to ∞ for all possible subsets ( ⊂
= of vertices of the input graph <(=, >). The only remaining 
constraints for this reduced problem are those that refer to 
connectivity requirements given by V, which thereby represents 
the standard survivable network design problem. 
 
4.4 Proposed Approximation Algorithm 
 

Algorithm 2: Iterative Rounding with Relaxation for Survivable Network Design Problem with Constrained !-Subgraph Flows 
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Algorithm 2 above shows our proposed approximation 
algorithm which provides (2$%, 2'(() + 3)  approximation 
guarantee as stated in Theorem 4. The core theory for justifying 
this approximation guarantee is Theorem 3 below which states 
that at each iteration of Alg. 2, either there is at least one edge 
with weight of at least 1/2, or there is some vertex set △"! that 
belongs to the branch of some ! -subgraph with at most 3 
outgoing edges. The proof for Theorem 3 is shown in the 
Appendix which relies on Theorem 5 – the Theorem that is 
analogous to Theorem 1 for the standard survivable network 
design problem To show that Algorithm 2 operates in 
polynomial-time, we enumerate the needed separation oracles in 
Section 4.5 below. 
 
Theorem 3  At each iteration ? of Algorithm 2, where H is a 
basic feasible solution for OP 3, at least one of the following 
occurs: 
 

1. there is at least one edge A such that H* ≥ 1/2.  
2. there is a set △"!⊆ =H , where =H  is the vertex set of a 

branch N(2G, =H , >H), with root 2G ∈ [ for some [ ∈ ℋ 
such that |ç(△"!)| ≤ 3.  

To illustrate these two options, we provide Figures 1a and 1b 
below. Here, we slightly abuse the notation by using lowercase 
letters, i.e. W, 1, R, AùR to refer to edges. At the same time, if an 
edge is assigned a value using the = operation, i.e. W = 1.0, this 
implies that in a solution, edge W is provided a weight of 1.0. 

 
Figure 1a: Figure showing an instance whereby the algorithm 

chooses the first option. Here, the cost of edge " is #. %&, while 

the costs of edges ' to ( is each 1.00. 

As a very simple illustration of the first option, consider Figure 
1a. Here, node 2& is required to be connected by one path to 
node 2O. In this case, node 2& may use the path provided by edge 
W, to go to 2O or it may use the path provided by the subgraph 
[& which goes through edges 1, R, É, A, V. But given that the the 
cost of edge W is 0.25, while the costs of edges 1 to V is 1.00, 
the linear programming solution would assign a weight of 1.0 to 
edge W, while a weight of 0.0 would be assigned to edges 1 to V. 
This solution is feasible given that including edge W  in the 
solution already satisfies the connectivity requirement that at 
least one path connects 2& to 2O. Given that the weight of W is 
greater than 0.5 , the algorithm chooses the first option and 
includes W in its solution set. 
 

 
Figure 1b: Figure showing an instance whereby the Algorithm chooses the second option. Here, the costs of edges ", ) and ( is each *##. #, 

while the costs of edges ', + and , is each #. %&.

As an illustration of the second option, consider Figure 1b above. 
Here, vertices 2&, 2' and 2P are required to be connected by one 
path to vertex 2Q as per connectivity requirements. Vertices 2&, 
2'  and 2P  can be connected to 2Q  either by passing through 
subgraphs [&, [', and [P respectively, or by using longer paths 
illustrated by dashed orange lines (which are disjoint from the 
three subgraphs [&, [', and [P). Suppose that in this example, 
subgraphs [&, [', and [P are provided a flow constraint of 1.0 
for all vertex sets connected to its trunk vertices. Suppose as well 
that in the optimal solution returned by linear programming, the 
trunk vertices of subgraphs [& and [' (blue vertices) receive a 
cumulative incoming weight of 0.60 coming from edges whose 

parents are yellow vertices. The incoming weight of 0.60 
however is distributed across edges (not shown in the figure) 
whose individual weights are all less than 0.5. This implies that 
the maximum weight that can be assigned to edges W and 1 in 
the graph is 0.4 in order to comply with the 1.0 flow constraint. 
Suppose as well that in the optimal solution returned by linear 
programming, edges that belong to the orange path are allocated 
a weight of 0.25. This implies that 2&, 2' and 2P only need to 
allocate an additional weight of 0.75 to their outgoing edges in 
order to meet their connectivity requirements with 2Q, or that 
W + 1 ≥ 0.75, R + V	 ≥ 0.75 and É + A	 ≥ 0.75. In fact, given 
that the costs of edges W, A and V is each 100.0, while the costs 
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of edges 1 , R  and É  is each 0.25,	 the basic feasible solution 
returned by linear programming results in a solution of W = 0.40, 
1 = 0.35, R = 0.3, É = 0.35, A = 0.4 and V = 0.45. Assuming 
that all other edges not shown in the figure aside from W to V all 
have weight less than 0.5, the algorithm may pick the vertex set 
△"! comprising of edges encircled in a lightly colored yellow 
box, where 2G ∈ [' . In this case, ç(△"!) = {1, R, É}  and 
|ç(△"!)| ≤ 3. 
 
Theorem 4  Given an admissible graph <(=, >) , a $% -
admissible collection ℋ  of subsets of = , an admissible 
connectivity requirement function V  and admissible flow 
constraint function ' , Algorithm 2 is a (2$%, 2'(() + 3) 
approximation algorithm for the survivable network design with 
constrained ! -subgraph flows problem. Moreover, the 
algorithm requires at most |>| + |=| iterations to terminate.  
 
Proof. At any iteration of Alg. 2, exactly one of the two options 
stated in Theorem 3 is picked by Alg. 2. If the algorithm picks 
the first option, then there is an edge A such that H* ≥ 1/2, for 
which Alg. 2 includes A in the solution set °. Since H* ≥ 1/2, 
upon rounding it we have ⌈H*⌉ ≤ 2H*. We note that Alg. 2 only 
includes in ° those edges with weight at least 1/2. Following 
(Jain, 2001), we have that a basic feasible solution for iteration 
? is valid for all iterations @ > ?. To see this, let H# be the solution 
at iteration ? and H% be the solution for iteration @ for ? < @. We 
have the following result for any pair of iterations ?, @ such that 
? < @: 
 

            ∑*∈1-R% R*H*
%
≤ ∑*∈1-R# R*H*

#  (4) 

where °# are the edges included in the solution set of edges of 
Algorithm 2 at iteration ? (and similarly for °%). If we apply Eq. 
4 to iterations 1 to ?, we arrive at the following equations which 
result in at least a 2-performance guarantee for Alg. 2. 

 
S

!∈#$%!
T!U!& ≤ S

!∈#$%!"#
T!U!&$' ≤. . . ≤ S

!∈#$%#
T!U!' 

[ S
!∈#$%!

T!U!& + S
!∈%!"$$%!"#

T!U!&$'+. . . +S
!∈%#

T!U!'] ≤ [ S
!∈#$%$

T!U!( +S
!∈%#

T!U!'] 

 ∑*∈1-R) R*H*
& +∑*∈R) R*H*

& ≤ 2∑*∈1 R*H*
& ≤ 2OPT 

Under the first option, Alg. 2 checks if some A included in °# 
belongs to ç(△"!) for some △"!⊆ =H, where =H is the vertex set 
of a branch N(2G, =H , >H), with root 2G ∈ [ for some [ ∈ ℋ. If 
there is such an edge A that meets this condition, let 2* denote 
the endpoint of A in this particular △"! . Let $ define the path 
starting from this endpoint 2* of A, and which ends at the root 
2G. Under constraint C2 of OP 3, all edges in the path $ from 2* 
to 2G have a weight of at least 1/2. It follows that the algorithm 
then includes in ° all edges of $, so that in future iterations, this 
path is effectively removed from the residual graph. However, 
paths starting from 2* to the leaves of =H may have weight less 
than 1/2. Given that the path from 2* to 2G are removed in the 
residual graph, it follows that all paths from 2* to the leaves of 
=H have to be likewise removed in order to keep constraint C2 
of OP3. For these removed edges that belong to some ç(△ ′"!), 
the algorithm reduces all '(△ ′"!) by the respective number of 
edges removed from ç(△ ′"!). Now, given that ℋ is admissible, 
=H  has at most %  leaves, and the length of any path from the 
vertex to a leaf is at most $. It follows that at most $% edges are 
removed from =H in this case. Since each edge is rounded off, 
this leads to a 2$%-approximation guarantee. 
 

If ever Alg. 2 picks the second option where there are at most 3 
edges in some set ç(△"!) for some △"!⊆ =H , and where =H  is 
the vertex set of a branch N(2G, =H , >H), with root 2G ∈ [ for 
some [ ∈ ℋ, the algorithm merely removes the upper bound for 
all ( ⊆ =H . Suppose that this occurs at iteration ? . For 
succeeding iterations greater than ?, at most a total of 3 edges 
can be added to ç(△"!) for any △"!⊆ =H, since all edges with 
zero weight are removed by the algorithm. Moreover, in case 
some edge in ç(△"!) was included in ° at some prior iteration 
(since its weight was at least 1/2 ), then the rounding-off 
procedure of Alg. 2 multiplies the weight of the edge by 2. It 
follows that '(() is violated by 2'(() + 3 for each ( ⊆ =H that 
corresponds to some subset of vertices △"! connected to 2G. 
 
It takes at most |>| + |=|  iterations for the algorithm to 
terminate, since the algorithm will definitely terminate if all 
edges from the original graph are removed.  
 
4.5 Time Complexity of Algorithm 2 and Separation Oracles  
Separation Oracles 
 
Lines 7-17 of Algorithm 2 could be done in polynomial time 
since performing these steps of the Algorithm merely involves 
checking if an edge has weight of at least 1/2 or if there is a set 
△"!  such that |ç(△"!)| ≤ 3 . The former can be done in 
polynomial time given that the number of edges in the input 
graph is polynomial. As for the latter, given that H is a basic 
feasible solution, it has to be the case that if a positively 
weighted edge in the branch of a !-subgraph has one endpoint 
being the trunk vertex, then there has to be at least one other 
positively weighted edge connected to its other endpoint 
(following the constraints of OP 3 and the fact that H is a basic 
feasible solution). It follows that in order to find the set △"! such 
that |ç(△"!)| ≤ 3, the algorithm merely checks the number of 
outgoing edges of each trunk vertex of its !-subgraphs. If a 
certain trunk vertex is the endpoint of less than or equal to three 
positively weighted edges, then the algorithm includes in its 
candidate △"!, the vertices corresponding to the other endpoints 
of these positively-weighted edges. It then checks if |ç(△"!)| ≤
3. If this condition is met, then the candidate △"! is the set that 
is desired. If not, this implies that all other candidate subsets △"! 
in this branch of the !-subgraph have |ç(△"!)| ≥ 4 (from the 
constraint of OP 3 and the fact that the branch has a tree 
structure). In this case, the algorithm moves on to the next trunk 
vertex. Given that the number of trunk vertices is polynomial, 
the procedures in this step is performed in polynomial time. This 
leaves us with line 6 of Algorithm 2 which performs linear 
programming over an exponential number of constraints of OP 
3. However, from (Williamson and Shmoys, 2011), this linear 
program could be solved in polynomial time using the ellipsoid 
method – as long as polynomial-time separation oracles are 
provided which indicate if a certain constraint of OP 3 is violated. 
 
For this purpose, the following are polynomial-time separation 
oracle methods to check constraint violations for OP 3. 
 

1. (Constraint C0): ∀( ⊆ =:∑*∈2(+) H* ≥ V(() 
The separation oracle for this set of constraints is the 
same as the separation oracle for the standard 
survivable network design problem described in (Jain, 
2001), (Williamson and Shmoys, 2011). 
 

2. (Constraint C2): 
∀[ ∈ ℋ,∀2G ∈ [, 
given	the	branch	N(2G, =H , >H), let2L ∈ =H 

be	any	parent	vertex	with	set	of	child	vertices	 
Q ⊂ =H , and	let 

2M ∈ =H	be	the	parent	vertex	of	2L. 



 
Vol. 16 | No. 02 | 2023                  SciEnggJ  

  
301 

We	have:g

#∈N

A#,"' ≤ H*"',"(  

 
The separation oracle for this set of constraints is as follows. For 
each [ ∈ ℋ, and for each branch N(2G, =H , >H) with root 2G ∈
[ , the oracle computes for each vertex 2 ∈ =H  the sum of 
weights all edges with one endpoint being 2 , and another 
endpoint being a child of 2 (where a vertex ? is a child of 2 if 
there is a path from ? to the root 2G, whose first edge is A#,"). Let 
this sum be denoted as H. Afterwards, the oracle checks if the 
weight of the edge from 2 to its own parent (if it has one) is at 
least as large as H. If this condition is not met, it follows that 
there is a violation of constraint C2. 
 

3. (Constraint C1): 
∀[ ∈ ℋ,∀2G ∈ [	given	the	branch	N(2G, =H , >H)	 

we	have	the	following	for	all 
△"!⊆ =H	that	are	connected	to	2

G: 
g

#∈△"! ,%∈0-9

H*#,% + g

#∈△"! ,%∈0&-△"!

H*#,% ≤ '(△"!) 

The separation oracle for this set of constraints is as follows. The 
oracle first checks if no violation has been discovered by the 
separation oracle for constraint C2. If no violation is seen, this 
implies that the sum of weights of edges with one endpoint in 2G 
and another in =H − {2G}  represents the maximum value of 
∑#∈△"! ,%∈0-9 + ∑#∈△"! ,%∈0&-△"!  for any △"!⊆ =H. Let this sum 
representing the maximum value be denoted as H . Given 
condition Z1 of ', we have that '(△"!) is constant for all △"!⊆
=H, and therefore could be represented by some constant ®. The 
oracle simply checks if H ≤ ®. If not, this implies that constraint 
C1 is violated.  
 
5. Conclusion 
 
In this paper, we presented a variant of the survivable network 
design problem which incorporates flow constraints over 
subgraphs, where these flow constraints are in the form of upper 
bounds over weights of outgoing edges of vertex subsets of the 
subgraphs. While the general problem of verifying if a certain 
set of edges in a graph cut of an arbitrary subgraph violates an 
upper bound is computationally difficult, our proposed problem 
considers certain types of subgraphs termed !-subgraphs.  These 
subgraphs have a tree structure composed of a trunk and several 
branches. Under this graph structure, along with certain flow 
conditions on flow constraints and edge weights, we construct 
an efficient procedure that checks if a subset of outgoing edges 
of a vertex subset of the subgraph violate the upper bound 
provided by the flow constraint. This allows for the construction 
of a polynomial-time algorithm based on iterative rounding and 
linear programming, where the linear programming component 
of the algorithm makes use of polynomial-time separation 
oracles under the ellipsoid method. Our proposed algorithm has 
(2$%, 2'(() + 3)-performance where $ is the maximum length 
of any path that connects the root and leaves of any branch of a 
!-subgraph, while % is the maximum number of leaves of any 
branch of any !-subgraph, and where ( is a subset of a branch of 
a ! -subgraph that is subjected to flow constraints. The 
approximation guarantee of our algorithm relies on the fact that 
at each iteration of the algorithm, there may either be at least one 
edge with weight of at least 1/2, or there is a vertex subset of 
some branch of a !-subgraph such that the number of outgoing 
edges of the vertex subset is at most 3. 
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6. Appendix 
 
6.1 Weakly Supermodular Property of t 
 
This proof for showing the weakly supermodular property of V 
follows Lemma 11.20 of (Williamson and Shmoys, 2011). 
Firstly, for the trivial case we have V(∅) = 0, which is weakly 
supermodular. Otherwise, consider again the following graph: 

 
We observe four inequalities: (1) V(Z) ≤ max(V(Z −

[), V(Z ∩ [) ), (2) V(Z) ≤ max(V([ − Z), V(Z ∪ [)) , (3) 
V([) ≤ max(V([ − Z), V(Z ∩ [) ), and (4) V(Z) ≤

max(V(Z − [), V(Z ∪ [)) . These inequalities follow by a 
simple counting argument. For instance, for the first inequality, 
edges with an endpoint in Z − [ and another in Z ∩ [ do not 
contribute to V(Z), but they contribute to max(V(Z − [), V(Z ∩
[)). To arrive at the weakly supermodular property for V, we 
gather the minimum of V(Z − [) , V([ − Z) , V(Z ∪ [)  and 
V(Z ∩ [). If the minimum is V(Z − [), we add inequalities (1) 
and (4) to arrive at the inequality V(Z) + V([) ≤ V(Z ∪ [) +
V(Z ∩ [). If the minimum is V([ − Z), we add inequalities (2) 
and (3) to arrive at the inequality V(Z) + V([) ≤ V(Z ∪ [) +
V(Z ∩ [). If the minimum is V(Z ∪ [), we add inequalities (2) 
and (4) to arrive at the inequality V(Z) + V([) ≤ V(Z − [) +
V([ − Z).  Lastly, if the minimum is V(Z ∩ [) , we add 
inequalities (1) and (3) to arrive at the inequality V(Z) +
V([) ≤ V(Z − [) + V([ − Z) . In all these cases for the 
minimum, we have shown that either V(Z) + V([) ≤ V(Z −
[) + V([ − Z)  or V(Z) + V([) ≤ V(Z ∪ [) + V(Z ∩ [) , 
thereby showing that V is weakly supermodular. 
 
6.2 Illustrations for Theorem 1 and 2 
 
In this section of the Appendix, we provide some simple 
illustrations of the ideas behind Theorem 1 and Theorem 2 of 
(Jain, 2001). Naturally, more comprehensive explanations and 
proofs of these Theorems are described in the seminal paper of 
(Jain, 2001). These ideas would be applied to Theorems 3 and 5 
which are their counterparts for the survivable network design 
problem with constrained !-subgraph flows considered in this 
paper. As mentioned, the proof of Theorem 1 relies on the results 
of Theorem 2 which states four nice properties of basic feasible 
solutions of the standard survivable network design problem. 
The first three properties listed in Theorem 2 (i.e. tightness, 
linear independence of ( ∈ ℒ, as well as |ℒ| = |>|) are all used 
to prove the important result that ℒ  is laminar. To see this, 
consider the following graph, where all edges (dashed lines) 
have a cost of 1.0. 

 
 

Suppose that in the above graph, vertex Z is required to have one 
path connecting it to vertex >. One basic feasible solution is to 
give a weight of 1.0 to edges A8N and AN1 resulting in a solution 
with total cost of 2.0. In this case, we can form several possible 
collections ℒ  of tight sets such that |ℒ| = |>| . These are as 
follows (orange circles), where the tight sets are linearly 
independent and laminar. 

 

To see that they are linearly independent, we consider the top 
left configuration of tight sets. In this case, we have one tight set 
(& = {Z}  and another as (' = {Z, Q}  such that I((&) = {A8N} 
and I((') = {AN1}. Since only two edges have positive weight, 
let the first dimension of the respective characteristic vectors 
denote edge A8N, and let the second dimension denote AN1. This 
gives s+) = [1,0]  and s+* = [0,1]  which are linearly 
independent. From (Jain, 2001), as long as the solution is a basic 
and feasible solution to the survivable network design problem 
(which could always be arrived at using standard linear 
programming properties), then the respective characteristic 
vectors are independent and any non-laminar collection of tight 
sets can be transformed from a non-laminar solution to a laminar 
solution by means of an “uncrossing” process. For instance, the 
following figure shows how the non-laminar collection of tight 
sets at the left is uncrossed to arrive at a laminar collection of 
tight sets to the right. 

 

 
A solution to the above graph however can be a non-basic 
solution. For instance, a similar solution with a total cost of 2.0 
can be arrived at by assigning a weight of 0.33 to all edges. This 
solution still meets the connectivity requirements of connecting 
vertex Z  with vertex [ . However, the resulting collection of 
tight sets would no longer be laminar nor linearly independent. 
For instance, a possible collection ℒ of tight sets such that |ℒ| =
|>| is as follows: 
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Here, we have (& = {Z}, (' = {>}, (P = {Z, Q}, (Q = {[, >}, 
(O = {[, >, c}, and (Y = {Z, [}, so that I((&) = {A89 , A8N , A8Z}, 
I((') = {A91 , AN1 , AZ1} , I((P) = {A89 , AN1 , A8Z} , I((Q) =
{A89 , AN1 , AZ1} , I((O) = {A89 , AN1 , A8Z}  and I((Y) =
{A91 , A8N , A8Z}. The sets (P  and (Y  cross, resulting in ℒ  being 
non-laminar. In fact, for any non-basic feasible solution to the 
described problem, any collection of tight sets such that |ℒ| =
|>| would have a pair of crossing sets. Moreover, it could be 
shown that the characterstic vectors of (& to (Y are not linearly 
independent. 
 
Arriving at a laminar collection ℒ is important in order to prove 
the fact any basic feasible linear programming solution H  to 
survivable network design problem has an edge whose weight is 
at least 1/2 . The proof for this uses a counting argument, 
whereby if some basic feasible solution H has a weight of less 
than 1/2  for each edge in > , then the number of counted 
endpoints would exceed 2|>|, providing a contradiction. As an 
example of this counting argument, consider a survivable 
network design problem whose corresponding network graph 
has four vertices 2&, 2', 2P, 2Q such that each pair of vertices is 
required to be connected by at least one path. Suppose that a 
laminar solution of this problem is shown as follows, where 
(& = {2&}, (' = {2&, 2'}, (P = {2P}, and (Q = {2Q}. Given the 
condition that |ℒ| = |>|, it follows that there are 4 edges with 
positive weight in the solution. Let (', (P, (Q be termed as “root 
sets” given that they are not contained in another tight set. On 
the other hand, let (& be a “child set” given that it is contained 
in a “parent set” which is ('. Now, suppose that all edges in a 
basic feasible solution H all have weight less than 1/2. Given 
that connectivity requirements are all integral, this implies that 
outgoing edges from I((&), I(('), I((P)  and I((Q)  have to 
number at least 3, in order to be greater than or equal to 1. The 
counting argument then goes as follows. Since there have to be 
at least three edges in I((&) , there are three edges with an 
endpoint being 2&. In this case, assign a value of two to (&, and 
let the surplus of one be given to its parent which is ('. Similarly, 
since there have to be at least three edges in I((P) and I((Q), 
assign a value of three to (P  and (Q  given that they have no 
parent. For (', it cannot be the case that all edges in I((') are 
the same as in I((&) due to the linear independence requirement. 
It follows that there have to be at least one edge in I((') with 
an endpoint being 2'. It follows that (' is assigned a value of 
two, one for the edge with endpoint being 2', and another for 
the surplus of one given by (&. It follows that the total value for 
(& to (Q is counted as 10, resulting in a total number of edges of 
5. This contradicts the fact that only 4 edges are part of the 
solution. 
 

 
On the other hand, if a collection of sets is not laminar, then it is 
possible that each edge is assigned a weight less than 1/2 while 
not arriving at a contradiction under a counting argument. For 
instance, consider the figure shown before involving six tight 
sets from a non-basic feasible solution. Here, all edges have 
weight less than 1/2, but the solution remains feasible.  For the 
survivable network design with constrained !-subgraph flows 

problem considered in this paper, a counterpart of Theorem 1 is 
Theorem 5 described below. In addition, the counting method 
used to prove Theorem 2 has its counterpart in Lemma 11 below. 
 
6.3 Technical Results 
 
Given a graph <(=, >) , let ( ⊆ =  and (′ ⊆ =  be two sets of 
vertices. For ease of notation, we denote the set of edges with 
one endpoint in ( and another endpoint in (′ as A[+,+<] ⊆ >. In 
case ( is a singleton, i.e. ( = {2}, the notation A[+,+<] = A[",+<] 
denotes the set of edges with one endpoint as 2  and another 
endpoint being a vertex in (′. If both ( and (′ are singletons, i.e. 
( = {2} and (′ = {2′}, then A[","<] = A","<, i.e. the unique edge 
connecting 2 and 2′. For all Lemmas, Theorems and Definitions 
in this Appendix, we assume that the input to OP 3 is a valid 
input consisting of an admissible graph <(=, >)  with a $% -
admissible collection of vertex sets ℋ , together with an 
admissible flow constraint function ' , and an admissible 
connectivity requirement function V. 
 
Definition 25   Given input graph <(=, >) and solution H to OP 
3, define the function R: 21 → ℝ as follows, whereby for all sets 
of edges A ⊆ >, we have:  

 R(A) = ∑*∈* H*                            (5) 
 

Definition 26  Let <(=, >) be the admissible input graph to OP 
3 that results in a basic feasible solution H, such that all edges 
in >  have positive weight, and all zero weighted edges are 
removed. We define the function ™ as:  

™: ℝ|1| × = × = → {0,1}|1| 
 

The function ™ works as follows. Each edge in > is assigned a 
coordinate in the output vector of ™. An input to ™ consists of a 
tuple (H ∈ ℝ, ( ⊆ =, N ⊆ =). Given this input, for each edge 
A ∈ >  with positive weight H*  under H , and which has one 
endpoint in ( and another endpoint in N, ™ assigns a value of 1 
to the coordinate of its output vector that corresponds to A . 
Otherwise, ™ assigns 0.  
 
6.4 Theorem 5 
 
In this Appendix, we first present Theorem 5 below which is 
needed for proving Theorem 3. The proof for Theorem 5 is built 
from a series of Lemmas described in the next subsection. 
 
Theorem 5  Let H be a basic feasible solution of OP 3. Given H, 
there is a collection ℒ of subsets of vertices with the following 
properties:   
 

1. for all ( ∈ ℒ, ( is tight.  
2. the characteristic vectors s+  for all ( ∈ ℒ are linearly 

independent.  
3. |ℒ| = |è| + |0| = |>|, where è refers to a collection of 

tight sets of vertices 
 
with respect to connectivity requirements, and 0 is a collection 
of tight sets of vertices with respect to flow constraints, and > 
refers to the set of edges that have nonzero weight in H, i.e. H* >
0. 
 
    4.  ℒ is laminar.  
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6.5 Technical Lemmas 

 
Figure 2: Figure illustrating a tight set △+)*  (orange circle) that 

contains the set △++*  (blue circle), where both △+)*  and △++*  are 

subsets of ., (green box). Both △+)*  and △++*  are connected to the 

root vertex (blue circle) which is in turn a trunk vertex of the trunk 

(trunk edges are represented by red edges) 

Lemma 1  Given a basic feasible solution H to OP 3, ∀[ ∈ ℋ, 
∀2G ∈ [, given N(2G, =H , >H), let △"-! ,△")!⊆ =H, such that △"-!⊆

△")!  and △")!  is tight. We have that △"-!  is also tight, and:  

g

#∈△"-!
,%∈0-9

H*#,% + g

#∈△"-!
,%∈0&-△"-!

H*#,%

= g

#∈△")!
,%∈0-9

H*#,% + g

#∈△")!
,%∈0&-△")!

H*#,% 

 

Proof. From the given, we have that △")!  is tight, or that: 

g

#∈△")!
,%∈0-9

H*#,% + g

#∈△")!
,%∈0&-△")!

H*#,% = '(△")!) 

 

From △"-!⊆△")! , we enumerate the following sets of edges as 
illustrated in Fig. 2: 

e0: set of edges with one endpoint being 2G and another  
endpoint in △"-!   

e1: set of edges with one endpoint in △"-!− {2
G} and another  

in [ −△")!   
e2: set of edges with one endpoint in △"-!  and another in  
= − =H  
e3: set of edges with one endpoint in △"-!  and another in △")!   
e4: set of edges with one endpoint in △")!−△"-!  and another in  

=H −△")!   
e5: set of edges with one endpoint in △")!−△"-!  and another in  

= − =H  
   
It follows that:  

g

#∈△")!
,%∈0-9

H*#,% + g

#∈△")!
,%∈0&-△")!

H*#,%

= R(A1) + R(A2) + R(A4) + R(A5) 

However, given constraint C2, we have  
R(A4) + R(A5) ≤ R(A3) 

Since H is feasible, we have R(A1) + R(A2) + R(A3) ≤ '(△"-!). 
Moreover, from condition Z1 of ', we have '(△"-!) = '(△")!). 
This leads to the following set of equations:  

'(△")!) = R(A1) + R(A2) + R(A4) + R(A5) 

 ≤ R(A1) + R(A2) + R(A3) 
 = '(△"-!) 

 
which implies that R(A1) + R(A2) + R(A4) + R(A5) = R(A1) +
R(A2) + R(A3), thereby proving the second claim of the Lemma. 
In addition, R(A1) + R(A2) + R(A3) = '(△"-!) , or that △"-!  is 
tight with respect to its flow constraint.  

 
Figure 3: Figure illustrating tight sets / ∈ 1 (blue circle) and 2 ∈
1 (green circle). / is tight with respect to flow constraints given 

by 3 and is connected to a trunk vertex (blue vertex). 2 is tight 

with respect to connectivity requirements given by (. 
 
Lemma 2  Given a basic feasible solution H to OP 3, let (, N ∈
ℒ be two tight sets that cross, where N is tight with respect to 
connectivity requirements given by V, and ( ⊂ [ for some [ ∈
ℋ is tight with respect to flow constraints given by '. We have 
V(N) = V(N − () . In addition, N − (  is tight with respect to 
connectivity requirements given by V, and ( − N is tight with 
respect to flow constraints given by '.  
 
Proof. We first observe that under condition F1 of V, we have 
zero connectivity requirements such that:  
  

∀[ ∈ ℋ,∀? ∈ [, ∀@ ∈ = − {?}: O#% = 0 
 
Thus for any [ ∈ ℋ, V(() = 0 for all ( ⊂ [. Since ( ∩ N ⊂ [, 
we have:  
 

V(N) = V({N ∩ (} ∪ {N − (}) 
 = V(N − ()                                        (6) 

 
As ( ⊂ [ is tight with respect to flow constraints, it follows that 
( is a set △"!  that is connected to some trunk vertex 2G ∈ [. 
Given this, We now enumerate the following sets of edges as 
illustrated in Fig. 3: 
 

    e1: set of edges with one endpoint in (( − N) and another  
in N ∩ (  

    e2: set of edges with one endpoint in N ∩ ( and another in  
= − (N ∪ ()  

    e3: set of edges with one endpoint in N − ( and another in  
= − (N ∪ ()  

    e4: set of edges with one endpoint in N − ( and another in  
N ∩ (  

    e5: set of edges with one endpoint in N − ( and another in  
( − N  

    e6: set of edges with one endpoint in (( − N) − {2G} and  
another in = − (N ∪ ()  

 
It follows that I(N) is composed of edges belonging to A3, A2, 
A1, and A5 or that: 

R(A1) + R(A2) + R(A3) + R(A5) = R(I(N)) = V(N) 
 
On the other hand, given that ( is tight with respect to flow 
constraints given by ', we have: 
 

R(A2) + R(A4) + R(A5) + R(A6) = '(() 
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Given that H is feasible, we also have:  
 R(A3) + R(A4) + R(A5) ≥ V(N − () 
But from constraint C2, it should hold that:  
 R(A2) + R(A4) ≤ R(A1) 
Given that the respective endpoints of edges in A2 and A4 that 
are in N ∩ ( are children of parent endpoints in ( − N (where the 
parent-child connection is made by edges in A1), given that ( −
N  contains the root 2G . This leads to the following set of 
equations:  
 

V(N − () ≤ R(A3) + R(A4) + R(A5) 
 ≤ R(A3) + R(A2) + R(A4) + R(A5) 
 ≤ R(A3) + R(A2) + R(A1) + R(A5) 
 = V(N) 

 
 
However, given that V(N − () = V(N) as pointed out above, the 
above inequalities should all hold with equality, therefore 
implying that V(N − () = R(A3) + R(A4) + R(A5), or that N −
( is tight with respect to connectivity requirements given by V. 
Lastly, to show that ( − N  is tight with respect to flow 
constraints given by ', we use Lemma 1 and the fact that ( −
N ⊂ (, and that ( is tight. This implies that ( − N is tight with 
respect to flow constraints given by '.  
 
Lemma 3  Given a basic feasible solution H to OP 3, suppose 
that N, ( ∈ ℒ are two tight sets that cross, where N is tight with 
respect to connectivity requirements given by V, and where ( ⊂
[ for some [ ∈ ℋ is tight with respect to flow constraints given 
by ' . We have that the sum of weights for edges with one 
endpoint in N ∩ ( and another endpoint in = − (N ∪ () is zero, 
i.e. 

g

#∈H∩+,%∈0-(H∪+)

H*#,% = 0 

Proof. For this proof, we use the same set of edges A1 -A6 
enumerated in Lemma 3. This Lemma is equivalent to saying 
that R(A2) = 0. Note that the assumptions of this Lemma are 
exactly the same as the assumptions of Lemma 2. Hence, we can 
apply Lemma 2, where we have V(N) = V(N − (), and that N −
( is tight with respect to connectivity requirements given by V. 
This leads to the following set of equations:  

V(N − () = R(A3) + R(A4) + R(A5) 
= R(A3) + R(A2) + R(A4) + R(A5) 

 = V(N) 
  
The above equalities would be satisfied if and only if R(A2) = 0, 
thereby proving the statement of the Lemma. 
 
Lemma 4  Given a basic feasible solution H to OP 3, let ℒ be a 
collection of tight sets with respect to either connectivity 
requirements or flow constraints. Suppose that there are two 
tight sets (, N ∈ ℒ that cross, where N is tight with respect to 
connectivity requirements given by V, and ( is tight with respect 
to flow constraints given by '. From ( and N, we can form new 
tight sets ´  and ¨  such that ´  and ¨  are laminar and sH +
s+ = s[ + s\.  
 
Proof. Firstly, from Lemma 2, N − (  is tight with respect to 
connectivity constraints given by V , and ( − N  is tight with 
respect to flow constraints given by '. We can thus set ´:= N −
( and ¨:= ( − N where both ´ and ¨ are tight with respect to 
their own respective constraints. To show that sH + s+ = s[ +
s\, we use the same set of edges A1-A6 enumerated in Lemma 
3. The edges in I(N), ç((), ç(( − N) and I(N − () are:  
 

I(N) = ⋃ {A1, A2, A3, A5}  
 ç(() = ⋃ {A2, A4, A5, A6} 

 I(N − () = ⋃ {A3, A4, A5} 
 ç(( − N) = ⋃ {A1, A5, A6} 

 
It follows that the only edges in I(N) ∪ ç(() that are not found 
in I(N − () ∪ ç(( − N) are edges in A2, or that:  
(sH + s+) − (sH-+ + s+-H) = 2 × ™[H, N ∩ (, = − (N ∪ ()] 

However, as stated in Lemma 3, we have R(A2) = 0. Therefore 
2 × ™[H, N ∩ (, = − (N ∪ ()] = 0 , or that sH + s+ = sH-+ +
s+-H = s[ + s\ as claimed.  

 
Figure 4: Figure illustrating two crossing sets /, 2 ∈ 1 such that 

both / (blue circle) and 2 (green circle) are tight with respect to 

flow constraints given by 3. Both / and 2 are connected to the 

same root represented by a trunk vertex (blue circle) and are 

subsets of .,. 

Lemma 5  Given a basic feasible solution H to OP 3, let ℒ be a 
collection of tight sets with respect to either connectivity 
requirements or flow constraints. Suppose that there are two 
tight sets (, N ∈ ℒ that cross, where both ( and N are tight with 
respect to flow constraints given by '. From ( and N, we can 
form new tight sets ´ and ¨ such that ´ and ¨ are laminar and 
sH + s+ = s[ + s\.  
 

Proof. We consider the following cases for which ( and N 
may cross.   

 
Case 1: ( ⊂ =8 and N ⊂ =9, where =8 and =9 are sets of 
vertices of distinct branches N(28

G , =8, >8)  and 
N(29

G , =9 , >9)  respectively, where N(2G, =8, >8) ⊂
<9([, >′)  and N(2G, =8, >8) ⊂ <9<([′, >′′) , for some 
[,[′ ∈ ℋ with [ ≠ [′  

Case 2: ( ⊂ =8 and N ⊂ =9, where =8 and =9 are sets of 
vertices of distinct branches N(28

G , =8, >8)  and 
N(29

G , =9 , >9)  respectively, where N(2G, =8, >8) ⊂
<9([, >′) and N(2G, =8, >8) ⊂ <9([, >′), for some [ ∈
ℋ  

Case 3: (, N ⊂ =H  and =H  is the set of vertices of a 
branch N(2G, =H , >H), whose root is a trunk vertex 2G ∈
[ of some [ ∈ ℋ  

We first note that cases 1 and 2 do not occur given conditions 
G1 and G2 for ℋ to be admissible, whereby under G1, for any 
pair [,[′ ∈ ℋ, with [ ≠ [′, we have that [ and [′ are disjoint. 
In addition, under G2, for each [ ∈ ℋ , any pair of distinct 
branches are disjoint. It follows that =8 and =9 in both cases are 
disjoint. Given that ( ⊂ =8 and N ⊂ =9, and that ' can only be 
tight for subsets of =8  and =9  that are connected to their 
respective root vertices, it follows that ( ∩ N = ∅. 
 
For case 2, we enumerate the possible edges in ç(N) , ç(() , 
ç(( ∩ N), and ç(( ∪ N) as follows. These edges are illustrated 
in Fig. 4. 



 
                                                                         SciEnggJ                      Vol. 16 | No. 02 | 2023 306 

e1: set of edges from 2G to N − (  
e2: set of edges from 2G to N ∩ (  
e3: set of edges from 2G to ( − N  
e4: set of edges from N − ( to =H − (N ∪ ()  
e5: set of edges from N − ( to = − =H  
e6: set of edges from N ∩ ( to =H − (N ∪ ()  
e7: set of edges from N ∩ ( to = − =H  

   e8: set of edges from ( − N to = − =H  
   e9: set of edges from ( − N to = − (N ∪ ()  

e10: set of edges from N − ( to ( − N  
 
 From the above enumerations of edges, we thus have:  
 

ç(N) = ⋃ {A3, A4, A5, A6, A7, A10}  
 ç(() = ⋃ {A1, A6, A7, A8, A9, A10} 
 ç(N ∩ () = ⋃ {A1, A3, A6, A7} 
 ç(N ∪ () = ⋃ {A4, A5, A6, A7, A8, A9} 

 
We claim that there are no edges in A10. To see this, note that ( 
and N correspond to subsets of vertices of =H that are connected 
to the root 2G  given condition Z2 of ' , whereby a subset of 
vertices of =H  becomes tight with respect to flow constraints 
given by ' if and only if the subset is a set connected to 2G. It 
follows that for any vertex ? ∈ (, there is a path from ? towards 
the root 2G. Similarly, for any vertex @ ∈ (, there is a path from 
@ towards the root 2G. Suppose for that there is an edge in A10 
with positive weight under solution H that connects ? ∈ N − ( ⊂
N to @ ∈ ( − N ⊂ (. Given that ? is an endpoint of this positively 
weighted edge, from constraint C2 of OP3, all paths from ? to 
the root 2G  should also have positive weight. Similarly, given 
that @ is an endpoint of some positively weighted edge in A10, 
all paths from @ to the root 2G should also have positive weight. 
It follows that we could then construct a positively weighted 
path from the root 2G towards ?, followed by an edge from ? to @ 
(using the edge in A10) then from @ to the root 2G. This creates a 
cycle which contradicts the tree structure of N(2G, =H , >H) . 
Therefore there should be no edge in A10. 
 
From Lemma 1, we have that N ∩ ( is tight given that N ∩ ( ⊆
N and N ∩ ( ⊆ (, and both ( and N are tight. To see that N ∪ ( 
is also tight, we note the following set of equations given that H 
is feasible and N,(, ( ∩ N are all tight, and that R(A10) = 0 as 
shown in the preceding paragraph. 
 
'(N) = R(ç(N)) = R(A3) + R(A4) + R(A5) + R(A6) + R(A7) 
'(() = R(ç(()) = R(A1) + R(A6) + R(A7) + R(A8) + R(A9) 
'(N ∩ () = R(ç(N ∩ ()) = R(A1) + R(A3) + R(A6) + R(A7) 

  '(N ∪ () ≥ R(ç(N ∪ ()) = R(A4) + R(A5) + R(A6) +
	R(A7) + R(A8) + R(A9) 

 
From condition Z1 of ' , we have '(N) = '(() = '(N ∩ () , 
which implies that: 
 
5(71) + 5(73) + 5(76) + 5(77) = 5(73) + 5(74) + 5(75) + 5(76) + 5(77) 

 = 5(71) + 5(76) + 5(77) + 5(78) + 5(79) 
 
or equivalently: 
 

R(A1) = R(A4) + R(A5) 
R(A3) = R(A8) + R(A9) 

 
Combining all of the above leads us to: 
'(N ∪ () ≥ R(A4) + R(A5) + R(A8) + R(A9) + R(A6) + R(A7) 
= R(A1) + R(A8) + R(A9) + R(A6) + R(A7) 
= '(() = '(N) 
 
But given that '(N) = '(() = '(N ∩ () = è(N ∪ ()  from 
condition Z1 of ' , the above equations should all hold with 
equality, which thus implies that N ∪ ( is tight with respect to 
flow constraints given by '. We can thus set ´:= N ∩ ( and 

¨:= N ∪ (, where both ´ and ¨ are tight. To show that sH +
s+ = s[ + s\, from the above enumeration of edges, we can see 
that edges which do not belong to ç(N ∩ () ∪ ç(N ∪ () are those 
edges in A10, or that:  
 

(sH + s+) − (sH∩+ + sH∪+) = 2 × ™[H, N − (, ( − N] 
 
However, as pointed out, there are no edges in A10 due to the 
tree structure of N(2G, =H , >H). Thus we have sH + s+ = s[ +
s\ as claimed.  
 
Lemma 6  Given a basic feasible solution H to OP 3, let ℒ be a 
collection of tight sets with respect to either connectivity 
requirements or flow constraints. Suppose that there are two 
tight sets (, N ∈ ℒ that cross. From ( and N, we can form new 
tight sets ´  and ¨  such that ´  and ¨  are laminar and sH +
s+ = s[ + s\.  
 
Proof. We consider the following cases to prove the Lemma:   
 

Case 1: ( and N  are both tight with respect to connectivity 
requirements given by V.  
Case 2: ( and N are both tight with respect to flow constraints 
given by '.  
Case 3: N is tight with respect to connectivity requirements 
given by V and ( is tight with respect to flow constraints given 
by '. 

 
Cases 2 and 3 are handled by Lemmas 4 and 5 respectively. This 
leaves us with case 1. However, for case 1, this is the same case 
of crossing sets considered in (Jain, 2001), whereby under a 
weakly supermodular function V, any pair of crossing tight sets 
( and N results in either (1) V(() + V(N) ≤ V(N − () + V(( −
N)  or (2) V(() + V(N) ≤ V(N ∪ () + V(N ∩ ()  occurs. If (1) 
occurs, we set ´:= N − ( and ¨:= ( − N. If (2) occurs, we set 
´:= N ∪ ( and ¨:= N ∩ (. From (Jain, 2001), in either case, 
both ´ and ¨ are tight with respect to connectivity requirements, 
and sH + s+ = s[ + s\.  
 
Lemma 7  Given a basic feasible solution H to OP 3, let ℒ be a 
collection of tight sets with respect to either connectivity 
requirements or flow constraints. Suppose that ( ⊂ = is a tight 
set (with respect to either connectivity requirements or flow 
constraints) such that s+ ∈ ∞$W±(ℒ) and ( crosses a set N ∈ ℒ. 
From Lemma 6, there is a tight set (′ that does not cross N and 
such that s+< ∈ ∞$W±(ℒ)  
 
Lemma 8  Given a basic feasible solution H to OP 3, let ℒ be a 
collection of tight sets with respect to either connectivity 
requirements or flow constraints. It follows from Lemma 7 that 
if ∞$W±(ℒ′) ≠ ℝ|1| , there is a tight set (  such that 
s+ ∈ ∞$W±(ℒ′) and ℒ′ ∪ {(} is a laminar family.  
 
Thus, given Lemmas 7 and 8 above, a procedure is outlined 
which shows how to construct the collection ℒ with properties 
described in Theorem 5. This construction procedure for 
building a collection of laminar, linearly independent tight sets 
thus proves Theorem 5. 
 
6.3  Proof of Theorem 3 
 
The following Definitions are needed for Lemma 9 which forms 
the core idea behind the proof of Theorem 3. Lemma 9 builds on 
the results of Theorem 5 which was proved in the previous 
subsection. 
 
Definition 27  A forest ℱ is a partial ordering of sets ( ∈ ℒ. 
Each tree in ℱ has a root that consists of a set not contained in 
any other set in ℒ. Given ( ∈ ℒ such that ( ⊂ (′ for some (′ ∈
ℱ , the set (  becomes a child of (′ in ℱ , and (′ becomes the 
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parent of ( if (′ is the minimal set that contains (. A node ( ∈ ℱ 
owns vertex 2 if ( is the lowest (or minimal) set that contains 2 
with respect to the partial ordering defined by ℱ.  
 
Definition 28  Given input graph <(=, >) and basic feasible 
solution H to OP 3, let ℒ be the laminar collection of tight sets 
with properties described in Theorem 5. Suppose that ( ∈ ℒ is a 
tight set with respect to either connectivity requirements or flow 
constraints. From (Vazirani, 2013), a corequirement function 
≥]: 2

0 → ℚ  under connectivity requirements given by V  is as 
follows: 
 

≥](() =
1

2
|I(()| − V(() = g

*∈2(+)

1

2
− H* 

In our setting, we use define another corequirement function 
≥^: 2

0 → ℚ under flow constraints given by ' as follows: 
 ≥^(() =

&
'
|ç(()| − '(() = ∑*∈J(+)

&
'
− H* 

 
It follows that if for some tight set ( ∈ ℒ, we have ≥](() = 1/2, 
or ≥^(() = 1/2, then |I(()| or |ç(()| is odd respectively.  
 
Lemma 9 Given input graph <(=, >)  and basic feasible 
solution H to OP 3, let ℒ be the laminar collection of tight sets 
with properties described in Theorem 5. Suppose that ( ∈ ℒ is a 
tight set with respect to connectivity requirements given by V, 
and which has r  children and owns ¥  endpoints, where r +
¥ = 3. Moreover, let each child (′ of ( have a corequirement of 
either ≥^((′) = 1/2 if the child (′ is tight with respect to flow 
constraints given by ', or ≥]((′) = 1/2 if the child (′ is tight 
with respect to connectivity requirements given by V. We have 
≥](() = 1/2  
 
Proof. For this Lemma, we follow the proof from (Vazirani, 
2013). From the assumptions, each child (′  of (  has either 
≥]((′) = 1/2 or ≥^((′) = 1/2. This implies that each child of ( 
an odd number of outgoing edges. We now consider the 
following cases: 
 

• ( owns no endpoints. In this case, we have ¥ = 3, and 
all edges with an endpoint in a child of ( has to have 
an endpoint outside of ( (since ( owns no endpoint). 
Therefore, we have |I(()| as the sum of the number 
of outgoing edges of (’s three children. Since each 
child of ( has an odd number of outgoing edges, it 
follows that |I(()| is odd. 

• ( owns one endpoint. In this case, we have ¥ = 2. Let 
(′ and (′′ denote the two children of ( . Since each 
child has an odd number of outgoing edges, we have 
|I((′)| + |I((′′)|  as even (and similarly for either 
|I((′)| + |ç((′′)| , |ç((′)| + |I((′′)|  or |ç((′)| +
|ç((′′)| ). Adding this number to the edge whose 
endpoint is owned by (, we have that |I(()| is odd.  

• ( owns two endpoints. In this case, ( has only one 
child with |I(()| as odd. Adding this number to the 
two edges whose endpoints are owned by (, we have 
that |I(()| is odd.  

• ( has three endpoints. In this case, ( has no children, 
and we trivially have |I(()| = 3 which is odd.  

It follows that in all cases considered above, we have |I(()| as 
odd, which implies that ≥](() = ±/2  for some odd ± ≥ 1 . 
Following (Vazirani, 2013), we have:  

≥](() ≤g

+<

≥]((′) +g

+<<

≥^((′′) +g

*

1

2
− H* 

where (′ ranges over the children of ( that are tight with respect 
to connectivity requirements given by V, and (′′ ranges over the 
children of ( that are tight with respect to flow constraints given 
by '. The first inequality follows from the fact that there may be 
some edges with an endpoint in a child of ( , and another 
endpoint in ( (outside of the child). Given that &

'
− H*  is less 

than 1/2, we consider the following cases:   

1. If ( has one child (′ and owns two endpoints such that 
≥]((′) = 1/2 or ≥^((′) = 1/2, we have ≥](() ≤ 1/2 +

[2 × (
&
'
− H*)] < 3/2. 

2. If ( has two children and owns one endpoint we have 
≥](() ≤ 1 + [1 × (

&
'
− H*)] < 3/2. 

3. If ( has three children and owns no endpoints, it should 
not be the case all edges with an endpoint in a child of ( 
have their opposite endpoints outside of (  since this 
violates linear independence of ℒ . Therefore we have 
≥](() < 3/2 

Given that |I(()| is odd, and ≥](() < 3/2 from the above cases, 
we have ≥](() = 1/2 as stated in the Lemma.  
 
Lemma 10 Given input graph <(=, >)  and basic feasible 
solution H to OP 3, let ℒ be the laminar collection of tight sets 
with properties described in Theorem 5. Suppose that ( ∈ ℒ is a 
tight set with respect to connectivity requirements given by V, 
and which has two children (′, (′′ ∈ ℒ, and that for (′, we either 
have ≥]((′) = 1/2 or ≥^((′) = 1/2. It follows that ( must own 
at least one endpoint.  
 
Proof. We follow the proof shown in (Vazirani, 2013) which 
uses contradiction. Namely, suppose that ( does not own any 
endpoint. Given linear independence of characteristic vectors of 
sets in ℒ, we have that edges in I((′) (or ç((′))should not be the 
same edges in I(() or I((′′) (or ç((′′)). Now, if ≥^((′) = 1/2, 
given that ( owns no endpoints, we have:  
 

∑.∈01,2∈340 [1/2 − H5,,.] + ∑.∈011,2∈01 [1/2 − H5,,.] = J6(K′) =
7
8 (7) 

Similarly, if instead we have ≥]((′) = 1/2, given that ( owns 
no endpoints, we have: 

∑.∈01,2∈340 [1/2 − H5,,.] + ∑.∈011,2∈01 [1/2 − H5,,.] = J9(K′) =
7
8 (8) 

Given that for (′, we either have ≥]((′) = 1/2 or ≥^((′) = 1/2, 
then either |I((′)|  or |ç((′)|  is odd. Given Eq. 7 or 8, this 
implies that the parity of the number of edges with an endpoint 
in (′ and another endpoint in = − ( is different from the parity 
of the number of edges with an endpoint in (′  and another 
endpoint in (′′ . This difference in parity implies that the 
corequirement ≥](() is different from ≥^((′′) if (′′ is tight with 
respect to flow constraints. Similarly, if (′′ is tight with respect 
to connectivity requirements, we have ≥](() as different from 
≥]((′′). Suppose that (′′ be tight with respect to flow constraints. 
We have:  

J9(K) = J6(K′′) + ∑.∈01,2∈340 [1/2 − H5,,.] − ∑.∈011,2∈01 [1/2 − H5,,.] (9) 
 
which implies that: 
 

'!(() − '"((′′) = ,
#∈%&,(∈)*%

[1/2 − 1+,,.] − ,
#∈%&&,(∈%&

[1/2 − 1+,,.] 

  
Similarly, if (′′ is tight with respect to connectivity requirements, 
we have: 
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J9(K) = J9(K′′) + ∑.∈01,2∈340 [1/2 − H5,,.] − ∑.∈011,2∈01 [1/2 − H5,,.]  (10) 
 
which implies that: 
  

'!(() − '!((′′) = ,
#∈%&,(∈)*%

[1/2 − 1+,,.] − ,
#∈%&&,(∈%&

[1/2 − 1+,,.] 

 
Any of the above equations imply that:  
 

1

2
< g

#∈+<,%∈0-+

[1/2 − H*#,%] − g

#∈+<<,%∈+<

[1/2 − H*#,%] <
1

2
 

 
This means that ( and (′′ have the same corequirement whether 
(′" is tight with respect to connectivity requirements given by V, 
or is tight with respect to connectivity requirements given by ', 
which is a contradiction. This means that ( has to own at least 
one endpoint. 
 
Lemma 11  Given a basic feasible solution H to OP 3, let ℒ be 
the laminar collection of tight sets with properties described in 
Theorem 5, and let <(=, >) be the resulting graph whose edges 
all have positive weight under H. Suppose that H* < 1/2 for all 
A ∈ > and that for all [ ∈ ℋ, we have that all subsets △"!⊆ =H 
(where =H  is the vertex set of any branch N(2G, =H , >H) 
connected to some trunk vertex 2G ∈ [ ), has more than 3 
outgoing edges, i.e. ç(△"!) ≥ 4. Given the forest ℱ constructed 
from the partial ordering of ℒ, the counted number of endpoints 
owned by nodes in ℱ exceed 2|>|. 
 
Proof. We borrow notations from (Jain, 2001), which uses the 
concept of tokens. Namely, each endpoint of any edge A ∈ > 
corresponds to one token. Given an endpoint of edge A, its token 
is initially assigned to the set that owns the vertex 2 
corresponding to an endpoint of A. Afterwards, the tokens can 
be re-assigned to other sets. From the assumptions, each set ( ∈
ℒ that is not a root in ℱ can be assigned two tokens. However, 
roots of trees in ℱ are assigned strictly more than two tokens. 
Given that the number of nodes in ℱ is equal to |>|, there should 
be only 2|>|  tokens corresponding to the total number of 
endpoints. However, as mentioned, more than 2|>| tokens are 
counted in total. 
 
We show this contradiction using several cases. Similar to the 
notations in Theorem 5, let è refer to a collection of sets in ℒ 
that are tight with respect to connectivity requirements, and let 
0 refer to a collection of sets in ℒ that are tight with respect to 
flow constraints, i.e. 0 ⊆ ℋ . Let (  be some node in ℱ . We 
consider the following cases. 
  

Case 1: ( ∈ è is a leaf.  
Case 2: ( ∈ 0 is a leaf.  
Case 3: ( ∈ 0 has some children.  
Case 4: ( ∈ è has four or more children.  
Case 5: ( ∈ è has three children.  
Case 6: ( ∈ è has two children.  
Case 7: ( ∈ è has one child.  

 
For case 1, given that all edges A ∈ > have H* < 1/2, there has 
to be at least 3 edges in I(() from the fact that connectivity 
requirement function V is integral. Since there are at least three 
edges with endpoints in (, and ( is a leaf, it follows that ( can 
be assigned exactly 2 tokens with a surplus of at least 1. In case 
( has exactly three outgoing edges, this implies hat ≥](() = 1/2. 
This fact is useful, since it implies that Lemma 9 can be applied 
by the parent of (. 
 
For case 2, if ( ∈ 0, we have that ( corresponds to some △"!⊂
=H, where =H is the vertex set of a branch N(2G, =H , >H) whose 

root is a trunk vertex 2G ∈ [  for some [ ∈ ℋ . From the 
assumption, ( has at least 4 outgoing edges. Therefore, ( can 
keep 2 tokens to itself and give at least a surplus of 2 tokens to 
its parent if it has one. 
 
For case 3, given that ( ∈ 0, we have that all of (’s children are 
not in è  - as a result of condition F1 for the connectivity 
requirement function V, i.e. if ( ∈ 0, then all vertices in ( have 
zero connectivity requirements. This implies that no subset of 
vertices of (  can be tight with respect to connectivity 
requirements given by V. Thus, if ( ∈ 0, all children of ( are 
tight with respect to flow constraints, i.e. all of its children 
should also belong to 0. In addition, in order for ( to have a 
child in 0 , it has to be the case that both ( and its children 
belong to the vertex set =H of some branch N(2G, =H , >H) whose 
root is a trunk vertex 2G ∈ [ of some [ ∈ ℋ. The children of ( 
cannot be connected to a different root given that the set of 
branches are disjoint for any [ ∈ ℋ. It follows that the children 
of ( are not disjoint. 
 
Moreover, we claim that ( should only have one child. Suppose 
to the contrary that (  more than one child. Without loss of 
generality, let ( have two children (′ and (′′. It cannot be the 
case that (′ ⊆ (′′ or that (′′ ⊆ (′ given that ( is the parent of 
both (′ and (′′, which implies that it is the minimal set which 
contains both (′  and (′′ . We thus have (′′ ⊆ (′  and (′ ⊆ (′′ . 
Given that ℒ is laminar, this implies that (′ and (′′ are disjoint. 
However, this is impossible given that the children of ( are not 
disjoint given that they are connected to the same root vertex 2G 
as pointed out in the preceding paragraph. Thus, ( has only one 
child. 
 
Given that (  has one child (′ , it cannot be the case that all 
outgoing edges of ( have endpoints in (′ since this violates the 
linear independence of characteristic vectors of sets in ℒ . 
Moreover, ( has to own at least two endpoints given that H* <
1/2 for all A ∈ >. If ( has only one endpoint, then the difference 
in R(ç(()) and R(ç((′)) differs by a fraction, contradicting the 
fact that both ( and (′ are tight with respect to flow constraints 
given ', and where ' is an integral function. It follows that ( has 
4 tokens, two of which come from the surplus of its child (′ ∈
0, and another two from the endpoints it owns. Therefore, ( can 
keep 2 tokens to itself and give at least a surplus of 2 tokens to 
its parent if it has one. 
 
For case 4, if ( ∈ è has four or more children, then ( has at least 
4 tokens from the surplus of its children. It follows that ( can 
keep 2 tokens and give 2 tokens to its parent if it has one. 
 
For case 5, ( ∈ è  has three children. If one child of (  has a 
surplus of two (i.e. for instance, if the child belongs to 0), or if 
( owns an endpoint, then ( has four tokens. Otherwise, each 
child of (  has a corequirement of 1/2 , and it follows that 
≥](() = 1/2 as well from Lemma 9. As stated, having ≥](() =
1/2 is useful since it means that Lemma 9 can be applied by (’s 
parent as its child (() has a corequirement of 1/2. Moreover, ( 
has 3 tokens, and it can keep 2 tokens to itself and give 1 token 
to its parent if ever it has one. 
 
For case 6, ( ∈ è  has two children. If both children have a 
surplus of at least 2 tokens (for instance, if both children belong 
to 0), then ( has at least 4 tokens. Otherwise, if one child has a 
surplus of 1, then from Lemma 10, ( has to own at least one 
endpoint. If both children have a surplus of 1, then both children 
have a corequirement of 1/2. From Lemma 9, this implies that 
≥](() = 1/2, and Lemma 9 can be applied again by (’s parent. 
In addition, if ( owns only one endpoint, it has 3 tokens, 2 from 
the surplus of its children and 1 from the endpoint it owns. Thus 



 
Vol. 16 | No. 02 | 2023                  SciEnggJ  

  
309 

( can keep 2 tokens to itself and give 1 token to its parent if ever 
it has one. 
 
For case 7, if ( ∈ è has only one child (′, then ( has to own at 
least 2 endpoints. Similar to case 3, it cannot be the case that all 
outgoing edges of ( have endpoints in (′ since this violates the 
linear independence of characteristic vectors of sets in ℒ . 
Moreover, if (  has only one endpoint, then the difference in 
R(I(())  and R(I((′))  differs by a fraction, contradicting the 
fact that both ( and (′ are tight with respect to integral functions. 
 
We now note that there are |>| nodes in ℱ given that |ℒ| = |>| 
as per Theorem 5. By definition, if a node is a leaf, then it has to 
have a parent. Let the leaf node be allocated 2 tokens and let it 
give all of its surplus to its parent. From the enumerated cases, 
there always exists a surplus that can be given by a child to its 
parent. If the parent of the leaf node is in turn a child of another 
parent node, let it keep 2 tokens to itself and let it give its surplus 
to its respective parent. Continuing in this way for any subtree 
N ∈ ℱ, we eventually reach the root node of N, which would 
collect strictly more than 2 tokens. In case a node is a root with 
no children, then cases 1-2 imply that it has strictly more than 2 
tokens by default. Given that each root node of ℱ has strictly 
more than 2 tokens, whereas each non-root node is allocated 2 
tokens, it follows that the total number of tokens collected in ℱ 
is greater than 2|>|. However, given that the number of nodes 
of ℱ equals |>|, there should only be 2|>| endpoints. This gives 
rise to a contradiction, thereby proving the Lemma. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  


